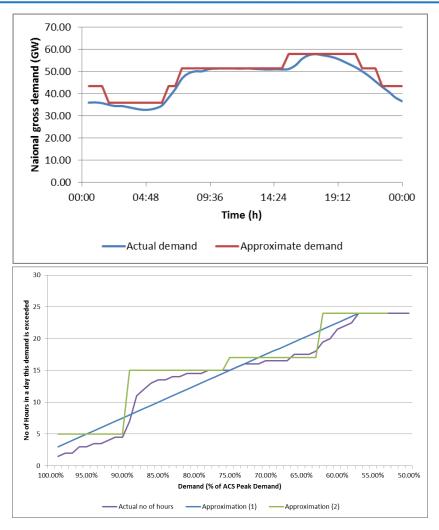
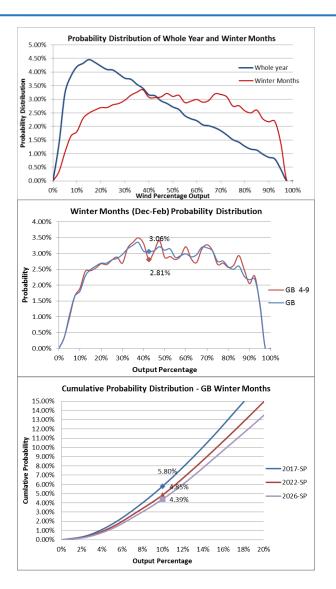
GSR022-WS1: Security Required Transfer Conditions

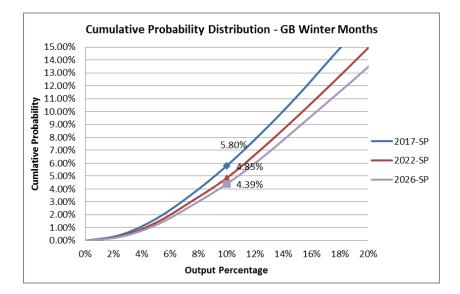

Update to the SQSS Review Panel Bieshoy Awad

Contents

- 1. Storage Assumptions
- 2. Wind Generation Assumptions
- 3. Interconnectors Assumptions
- 4. Straight Scaling Technique


Storage Assumptions

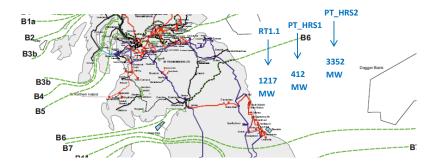
- Storage should be able to sustain its MW output for as long as it is deeded.
- Proposal is to base the storage availability factors on
 - the duration it is needed for (5 hours and 15 hours)
 - Its storage capacity
- Potentially introduce a cap on total storage to ensure recharging is feasible within the day


Wind Generation Assumptions

- Seasonal variations are significant but time-of-the-day variations are negligible
- More wind generation → Lower availability – although by not much
- Central view is SP2022 (based on FES 2016 data)
- Wind output will be less than 5% for 1.39% (30h) of the winter time and less than 10% for 4.9% (106h) of the winter time

Wind Generation Assumptions

- Concept of "Equivalent Firm Capacity" might not be suitable for the SQSS
- Wind availability factor could be
 - Zero (status quo)
 - Zero unless there is capacity shortage
 - A value based on the cumulative probability distribution
 - A value based on the convolution between wind probability distribution and load duration curve (probability that demandwind generation exceeds a certain level)


Interconnector Assumptions

Methodology

- Reduce the generation margin in GB and check interconnector flows
- Reduce the generation everywhere else and see if the flow has changed.
- Check for sensitivities
- Try to draw conclusions
- Preliminary observations
- Prices drive flows
- When margins are tight, GB is a net importer. However, this does not apply on each interconnector individually
- Further analysis are necessary to allow the specification of generic rules

Straight Scaling Technique - Issue

- Generation "availability factors" may result in generation deficit.
- To balance the system, we need to make certain assumptions
- If the future is different to these assumptions then we will have either
 - Invested in unnecessary capacity, or
 - Risking losing demand
- Two extreme cases

Straight Scaling Technique - Risks

Risks

Stranded Capacity

The assumptions force an investment in a capacity that will not be required in the future.

Lost Load

The assumptions does not provide enough capacity for future generation to meet the demand. Scenarios with the highest risk (for each boundary)

High Risk Scenario 1

All new generation appears on one side of the boundary under consideration

High Risk Scenario 2

All new generation appears on the other side of the boundary under consideration

Straight Scaling Technique – Options

Does the risk mitigated justify the additional investment?

We are currently checking the methodology and the results for consistency so the views here are not final!

Discussion