nationalgrid

BELECTRIC: Enhanced Frequency Control Capability

Tim Müller, CTO 28/03/2018

Company profile

- Yearly total revenue of 550M EUR
- 84 MW / 95 MWh energy storage systems installed or under construction
- Over 120 patents registered since 2001
- Technology leader in utility-scale solar power business

Agenda

Project Background

- Role of BELECTRIC
- Hardware overview
- Communication system

The role of BELECTRIC in EFCC

- Crossing from centralized to distributed control scheme
- BELECTRIC realises one local control scheme for fast frequency response
- Rainbows PV power plant

Rainbows solar PV farm in Willersey, England

System communication overview

Progress and Tests

Forecasting

Tests & Trials

Key Learnings

nationalgrid

Forecasting: Hold time and curtailment reference

Power availability sent

MATLAB PV model

Cloud camera forecasting

- Cloud Camera
- Forecasts global horizontal irradiance data for the next 15 minutes
- Findings
- Inconsistent and low accuracy
- Probabilistic forecasting

- MATLAB PV Plant Model
- Calculates power production by Rainbows during a solar irradiance
- Findings
- Model accuracy: Underestimating
- PV Model slows communication
- Revised forecasting system

Photovoltaic stand alone tests

Precursor

- Inverter control
- Lookup table test
- Curtailment test

Open Loop Test

- Frequency event: simulated
- Frequency event: non simulated

Hardware in Loop Test

- Frequency event: simulated
- Frequency event: non simulated

Precursor test lookup table

- Purpose
 - Investigate inverter behaviour
 - Find ramp up/down rates
- Only inverter 1.1 participated
 - 100 kW working point step changes (hard curtailed)
- Test conducted during high and constant irradiance (~750 W/m²)
- Data measurement via Phasor Point Measurement Unit (PMU)

Precursor test lookup table: Results

- Ramp rate did change with working point
- Ramp down slower than ramp up
- Further testing necessary
- Expect similar behavior with different inverters
- Investigate variables impacting behavior

Precursor test curtailment

Purpose

- To provide positive power response (50%) and negative power response (50%) during an event
- Hard curtailment vs soft curtailment
- Have Rainbows still behave like a PV plant
- Results
- Positive/negative power response ✓
- Minimum ±8.8 kW working point change limit

Continuous Soft Curtailment

Open loop test – simulated & real

Hardware in the loop test

- Purpose
- To investigate the system hardware and real time power response of the inverters during a frequency event
- Test subdivison
- Grid Simulator: actual resource availablity with <u>simulated</u> frequency events
- PMU: actual resource availablity with <u>real</u> frequency events

HiL test simulated frequency event

- Test Procedure
- Inverter 1.1's actual resource availability sent to the GE local controller
- Simulated frequency event of 50.35 Hz
- Hardware reacted to negative power request sent by GE local controller
- Inverter 1.1 AC power curtailed
- Provide negative power response through PV

HiL test real frequency event

- Test Procedure
- First Test Period: No curtailment
- Second Test Period: Inverter 1.1 soft curtailed to 50%

- Testing on-going
- Events are rare and must coincide with PV power availability

Key learnings so far

- PV systems can be integrated into the EFCC scheme
- PV power availability forecasting
- Communication traffic highly effects communication rate and inverter response time
- Adjustment to data point table sent and received
- PV inverter ramp rates are asymetric
- Inverter power response has ±8.8 kW power response resolution
- Importance of time synchronisation
- Importance of curtailment as under-frequency events are more common

Moving Forward

Future Work

- Hybrid system
- Schedule

Future work

- PV stand alone
 - Investigate consistent ramp rates for PV inverters by i.e. changing current and voltage instead of power percentage set point
 - Investigate response time accuracy and consistency
- Battery stand alone solution
- PV + Battery hybrid system solution
 - Quicker response time with battery support
 - Greater system power availability

PV stand alone - frequency response

Combined PV + battery frequency response:

Combined PV + battery frequency response:

Combined PV + battery frequency response:

Hybrid system solution complexity

Deciding on how resources work together

 Example: Optimising battery ramp down support vs. battery positive power availability

 Pro: faster negative power response

 Con: less battery power availability for positive response

Hybrid system solution complexity

- Example: Calculation of PV + battery power availability hold time
- Accounting for PV forecasting
- Order in which the resources respond

Moving forward

nationalgrid

