Sharing

Andy Wainwright National Grid

Sharing under CMP213

- Sharing on the wider system
 - Reflecting recent developments in transmission investment drivers (GSR009)
 - Proposed changes to the Transport Model
 - Reflecting the impact of individual users
 - Proposed changes to the Tariff Model
 - Workgroup developments
 - Diversity
 - Hybrid annual load factor
- Sharing on the peripheries of the system

Sharing – Defect

Increasing variable generation = increased network sharing

 On wider system greater proportion of investment driven by cost benefit analysis (GSR-009)

Capacity Sharing – Theory

- Explicit information is not available (TAR)
- Implicit assumptions must be made
- For investment driven by "year round" conditions, these should reflect assumptions made in cost benefit analysis

TSOs incentivised to balance SRMC and LRMC

GSR-009: Review of NETS SQSS for Intermittent

Total transmission cost = operational + infrastructure

 GSR-009 set out to create deterministic standards from detailed cost-benefit analysis (CBA)

GSR-009: Outcomes

- Split planning background into peak and pseudo-CBA
- Fixed scaling factors for some generation

Generator Type	TEC	Current Methodology	Peak Background	Pseudo-CBA Background
Intermittent	5,460	65.5%	0%	70%
Nuclear & CCS	10,753	65.5%	72.5%	85%
Interconnectors	3,268	65.5%	0%	100%
Hydro	635	65.5%	72.5%	66%
Pumped Storage	2,744	65.5%	72.5%	50%
Peaking	5,025	65.5%	72.5%	0%
Other (Conventional)	61,185	65.5%	72.5%	66%

Values in grey vary depending on the total demand level, whilst values in black are fixed scaling factors

Translating GSR009 into TNUoS methodology

- Sharing takes place on the wider network
- Dual backgrounds in the Transport Model – SQSS
- Circuits selected as either Year Round or Peak Security based on higher MW flow

Reflecting Characteristics of individual users

- Separate tariffs consistent with network planning
- Generator specific load factor multiplier for year round

Is load factor a reasonable proxy?

Many characteristics of a generator contribute to incremental impact on network costs

Market model; relationship between generators and network costs

Basics of a Market Model

Unconstrained Dispatch

■ Fuel Price

■ CO₂ Price

■ ROC/FiT Price

Capacity

Unit Avail.

■ Fuel Avail.

Efficiency

Demand

■ Merit Order

Prices

Fuel Price

CO₂ Price

ROC/FiT Price,

Gen. Unit

Capacity

Unit Avail.

Fuel Avail.

Efficiency

Market

Demand

Merit Order

Market Model - Generation Inputs

Market Model - Generation Merit Order

Market Model - Unconstrained Dispatch

Market Model - Network Capability

Unconstrained Dispatch

(One Demand Sample)

Zonal Network Representation

Market Model - Constrained Dispatch

Constrained Dispatch

Technology 6 Offer (£/MWh) 1GW BM **Technology 5** Action Bid (£/MWh) **Technology 4 Technology 3 Technology 2 Technology 1**

Zonal Network Representation

Elements Influencing Constraint Costs

Key elements affecting incremental cost

Diversity Alternatives – Effect of Bid/Offer Price

 In areas with insufficient diversity of plant the SO may be forced to accept bids from infra-marginal plant

Export constrained zones with low diversity

Export constrained zones – Simplified Analysis

 Simplified 'test zone' analysis served to corroborate hypothesis and help quantify effect

Diversity 1

- (YR Shared incremental £/kW) x ALF x TEC
- (YR Not-shared incremental £/kW) x TEC

Diversity 2

- (YR Shared Incremental £/kW) x <u>ALF</u> x TEC
- (YR Not-shared Incremental £/kW) x TEC

Diversity 3

(Incremental £/kW) x ZSF x TEC

Sharing under diversity alternatives

Boundaries and LC/C ratios are illustrative

Sharing under diversity alternatives

Zone A Totals

 Zonal totals made up of aggregate of relevant boundaries

Load Factor Alternatives

- Workgroup concerns over ability of original to reflect step changes in user outputs.
- Alternative for user to provide own forecast if different to National Grid calculated ALF
 - Hybrid Alternative
- Penalty payments if forecast is inaccurate

Sharing at the peripheries of the system

- Diversity impacts potentially greatest at peripheral parts of system
 - Local circuits still built for capacity
- These are managed implicitly in diversity options
- For Original, propose to alter MITS definition to improve cost reflectivity
 - Radial circuits
- However, sharing could still exist on such circuits
 - Heriott-Watt work; CCF

Herriot – Watt Analysis& Counter Correlation Factor

- Potential for counter correlation of low carbon technologies
 - Could be reflected in radial circuit designs by TOs
 - Use of counter correlation factor (CCF)