About this document

This document contains National Grid’s System Operator’s proposed process for Offshore Wider System Works.
Offshore Wider Works Processes

Foreword

This document contains National Grid’s System Operator’s proposed processes for Offshore
Wider System Works in the following two areas:

Offshore Wider Works – Developer Associated describes the process for investment in
transmission capacity to provide wider network benefit, which is led by developers (whether
generator builds or OFTO build). It includes investment in offshore transmission assets or
capacity that goes beyond that needed by a single developer and is for the purpose of
supporting the reinforcement of the GB transmission network (the wider network). This could
include investment providing for, or creating the potential for, increased boundary transfers
between different zones of the wider network via offshore links.

Offshore Wider Works – Non Developer Associated describes the process for investment
that would support reinforcement of the wider transmission network, but where developers
are unwilling or unable to take forward the offshore wider works. Offshore Wider Works non
developer-associated needs case is in many cases a substitute for onshore wider works and
SO Process for Offshore Wider Works – Developer Associated

About this document
This document contains National Grid’s System Operator’s proposed process for Offshore Wider System Works – Developer Associated.

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>June 2017</td>
</tr>
</tbody>
</table>
SO Process for Offshore Wider Works – Developer Associated

Contents

Offshore Wider Works – Developer Associated : Overview ... 5
Offshore Wider Works – Developer Associated : the SO’s Role ... 6
Current offshore transmission assets have been developed as standalone connections to shore known as a radial connections. However, the Round 3 offshore wind projects are larger, more complex and at a greater distance from shore than those that have been developed so far; as a result there is likely to be the potential for efficiencies from greater coordination of offshore transmission infrastructure. This could include coordination between connections, and coordination of the strategic development of the wider network through offshore reinforcement projects.

Offshore Wider Works developer-associated is investment in transmission capacity to provide wider network benefit, which is led by developers (whether generator builds or OFTO build). It includes investment in offshore transmission assets or capacity that goes beyond that needed by a single developer and is for the purpose of supporting the reinforcement of the GB transmission network (the wider network). This could include investment providing for, or creating the potential for, increased boundary transfers between different zones of the wider network via offshore links.

The offshore connection offer process has a key role in the development of a coordinated offshore transmission network. Where it is economic and efficient, Offshore Wider Works may form part of a developer’s connection offer and subsequent bilateral connection agreement (BCA). In December consultation, Ofgem proposed high level roles and responsibilities to support a gateway assessment process for Offshore Wider Works. In responding to Ofgem proposals, stakeholders broadly agreed that the SO should support the needs case for developer-associated Offshore Wider Works at the gateway assessments. Ofgem maintain the position that the developer should lead in triggering and making submission to the voluntary gateway assessments, and that the SO (drawing on relevant Transmission Owners (TOs) as necessary) should assist with developing the needs case for the Offshore Wider Works for any Ofgem gateway assessments. Further, both parties will have a role in monitoring the needs case for the Offshore Wider Works, with the developer reviewing their design where this is an appropriate response to a change in the needs case.

Ofgem at this stage, consider that offshore developers should retain the choice to undertake preliminary Offshore Wider Works for the development of coordinated offshore transmission assets under developer-associated Needs Case.

1 In planning and developing offshore transmission assets under the generator build option, developers are required under the Grid Code (Planning Code) to take into account reasonable requests from the NETSO where it is reasonable and practicable to do so (PC.8.3)
6 Based on the consultation document from December 2013 a majority of the respondents agreed that the SO should support the needs case for Offshore Wider Works developer-associated. It was also very clear from the consultation that affected TO and offshore developer’s contribution and cooperation would be also required. The following text is explaining each point of the SO process for Offshore Wider Works developer-associated.

7 Step 1: Identification of System Need. The Offshore Wider Works can be identified in two ways:
 a. SO assess the system need through an annual Electricity Ten Year Statement (ETYS) process. Some of the system reinforcement options will be an Offshore Wider Works options and will be subsequently included in the NOA document.
 b. Offshore Wind Farms Connection offer will also identify the investment need for the Offshore Wider Works.

8 Step 2: Offshore Wind Farm Connection Application and CION
 c. As part of the connection offer process, SO is required to provide details to the developer of the preliminary identification and consideration of the connection options available. This includes the preliminary costs used in assessing such options and the offshore works assumptions, including the assumed interface point identified. SO fulfils these requirements by the production of the Connections Infrastructure Options Note (CION). The CION sets out the offshore works assumptions and consideration of options available and is provided to the developer during the connection offer process.

9 Step 3 & Step 4: SO and offshore developer are working together on development of the Offshore Wider Works Options
 d. In collaboration with offshore developer, the SO develops the Offshore Wider Works options.
 e. In developing Offshore Wider Works, SO will take into consideration two major transmission system design criteria: network capacity availability of local boundary and shortfall of the wider system boundaries.
 f. According to Chapter 2 of the NETS SQSS – Generation Connection design, the transmission system is designed to accommodate 100% of the transmission entry capacity at the connection point within a local boundary (e.g. for 1GW wind farm connection, the onshore system is designed to accommodate the complete 1GW generation and the offshore assets are sized to provide this full transmission entry capacity.)
 g. In planning the Main Interconnected Transmission System (MITS) however, under Economic Criterion (NETS SQSS, Appendix E) different
scaling factors are applied to different types of generating plant i.e. Nuclear Power – 85%, Pumped Storage – 50%, Interconnectors – 100%, Wind, Wave and Tidal – 70% while conventional generation is scaled variably. In the case of wind, this implies that the assets are assumed to be 70% utilized by the wind generated. Taking into account all this scaling factors, the offshore infrastructure is allowing some spare capacity in the assets. It is this ‘spare’ capacity that provides the opportunity for offshore wider works to be utilised as one of the options to provide boundary capability across a non-compliant boundary.

h. In providing the Offshore Wider Works design it is crucial SO and offshore developer to work together and agree on the generation background, scenarios and sensitivities which will be used as a basis for the Offshore Wider Works Design. In this stage SO will inform Ofgem on agreed background and scenario between SO and offshore developer.

i. The benefits of the Offshore Wider Works will also be assessed by utilising a combination of operational actions to maximize the capability across the boundaries (e.g. actions included QB optimisation and redirection of flows in HVDC links).

j. Once SO and the offshore developer agrees on Offshore Wider Works options, the agreed Offshore Wider Works options are progressing into the Cost Benefit Analysis (CBA).

10 Step 5: Cost Benefit Analysis (CBA). SO, supported with information from offshore developer, perform the CBA on the agreed Offshore Wider Works options from Step 3 & 4. The rationale behind the Cost Benefit Analysis is explained in the following text:

a. The key economic objectives for CBA for Offshore Wider Works are:
 i. Ensure value for money for the consumers by delivering cost effective reinforcements to ensure economically efficient design and operation of the network.
 ii. Timely delivery of necessary reinforcement(s) to minimise any cost exposure for consumers to either early investment or delayed implementation.

b. The objectives for Offshore Wider Works CBA are:
 i. To be consistent with Licence obligations and National Electricity Transmission System (NETS) Security and Quality of Supply Standards (SQSS); the analysis promotes economic and efficient investment.
 ii. To present economic justification for the preferred Offshore Wider Works designs and an explanation of how they compare with the alternative counterfactual case.
 iii. To present evidence on expected long-term value for money for consumers considering a range of sensitivities
 iv. To present evidence on optimal timing of the preferred reinforcement option.

c. Driven by these objectives the scope of the CBA is:
 i. To establish the reference case position in terms of constraint costs forecasts associated with the ‘do minimum’ network state, across different generation background scenarios.
ii. To model the economic impact, measured as constraint cost savings, for a range of designs, across a range of scenarios.

d. To undertake a CBA by:
 i. Appraising the economic case of the options by adopting the Spackman2 approach and determining respective Net Present Values (NPVs) across the studied generation scenarios and sensitivities.
 ii. Establishing worst regrets associated with each design/technology appraised.
 iii. Identifying the Least Worst Regret option overall
 iv. Assessing the impact of key sensitivities: increase in capital expenditure, and delays in delivery timeframes.
 v. Make recommendations for the preferred option i.e. the Least Worst Regret solution, taking into consideration the impact of sensitivities.

11 Step 6: SO discusses the preferred Offshore Wider Works option from CBA (Step 5) with offshore developer and affected TO

12 Step 7: Offshore Wider Works Needs Case submission through voluntary gateway process
 a. SO makes a recommendation on preferred option for Offshore Wider Works developer-associated. SO supports offshore developer in submission of Offshore Wider Works needs case to Ofgem via voluntary gateway process
 a. Based on the last consultation in December 2013 offshore developers will have the option to go through one or two Ofgem gateway assessments, timed broadly ahead of the commencement of preliminary works and ahead of construction works. Where a developer is comfortable that it can support its decision to develop the Offshore Wider Works as part of a cost assessment during a tender exercise, the developer can choose not to go through one, or both, of the gateway assessments. In general Ofgem is expecting that two voluntary gateway assessments would be sufficient. However, if a developer considers that there are substantial benefits to passing through more than two gateway assessments in a particular case (for example in the case of particularly large, complex projects) Ofgem would look to engage with the developer to understand these benefits and consider the best way forward.
 b. At the first gateway assessment, Ofgem will review the rationale for including the Offshore Wider Works in a developer’s design solution at the preliminary works stage. This is the case for developers following both the generator build and OFTO build option. Where Ofgem is convinced by the developer’s rationale for undertaking certain preliminary works associated with the Offshore Wider Works, Ofgem would not reassess this rationale during the tender exercise.
 c. At the second gateway Ofgem will review the rationale for constructing the Offshore Wider Works. Where the developer choose the generator build option, Ofgem assessment at the second gateway will inform the cost assessment process undertaken during the subsequent tender exercise.

2 The Joint Regulators Group on behalf of UK’s economic and competition regulators recommend a discounting approach that discounts all costs (including financing costs as calculated based on a Weighted Average Cost of Capital or WACC) and benefits at the Social Time Preference Rate (STPR). This is known as the Spackman approach. Further details of our assumptions regarding WACC and STPR are presented later in this document.
Where Ofgem is convinced by the developer’s rationale for including specific additional, or oversized, transmission assets associated with the Offshore Wider Works, Ofgem would commit to not reassessing this rationale during the tender exercise. Where a developer is following the OFTO build option, Ofgem assessment will help to inform the scope of the OFTO build tender exercise.

d. Any Ofgem commitment regarding not re-assessing the rationale for the Offshore Wider Works at the first or second gateway, would be conditional on the SO and the offshore developer continuing to engage and monitor the needs case for the Offshore Wider Works. Where the needs case changes, Ofgem is expecting these parties to review the design of the offshore assets and make any necessary changes where this would be economic and efficient. Ofgem is expecting that this process would take into account both the needs of the wider network and the impact of any changes on the cost and timing of an offshore developer’s connection. In some instances, a change in the needs case for the Offshore Wider Works may mean that the Offshore Wider Works is no longer taken forward.

e. All the costs incurred in connection with development and construction of the agreed scope of the transmission assets, including the Offshore Wider Works elements, would remain subject to the economic and efficient test as part of Ofgem’s cost assessment.

13 Step 8: Voluntary Gateway Process Assessment

a. 1st gateway assessment (preliminary works): The developer, supported by the SO, may submit a needs case for the Offshore Wider Works to Ofgem. Where a robust needs case is submitted, Ofgem makes commitments on approach to cost assessment on the rationale for Offshore Wider Works preliminary works.

b. 2nd gateway process: The developer, supported by the SO, may submit a needs case to Ofgem. Where a robust needs case is submitted, Ofgem make commitments on approach to cost assessment on the rationale for Offshore Wider Works construction works.

c. Tender Exercise: The developer triggers a tender exercise Ofgem conducts a cost estimate and assessment, taking into account commitments at the 1st and 2nd gateway assessments.

d. In the 2013 December consultation Ofgem proposed a number of high level criteria that would be used to evaluate gateway assessment submissions. These criteria included:
 i. the (economic) needs case for investment
 ii. the timing and scope of the project and its technical readiness
 iii. proposals for ongoing SO-developer engagement

e. Gateway assessments will, in general, be expected to take place before a tender exercise has commenced. As the purpose of the gateway assessment is to inform a resulting tender exercise cost assessment, Ofgem expect the developer to be able to show their commitment to triggering a tender exercise for those assets before Ofgem undertake a gateway assessment.

f. Timing of the Gateway process

k. In 2013 consultation Ofgem proposed providing flexibility in the timing of gateway assessments, driven by the needs of individual projects. The
identified flexibility applied to the point at which the developer would trigger the gateway assessment, based on the developer’s ability to provide sufficient information to enable Ofgem to conduct an informed assessment. Ofgem expect that early engagement between developers and Ofgem would inform the point at which the gateway assessment would be triggered.

I. Developers and the SO will need to undertake analysis to provide an evidence of the feasibility and needs case for taking forward the Offshore Wider Works before considering triggering the first gateway assessment. Ofgem is considering that developers will generally only be able to satisfy the assessment criteria for the first gateway assessment after they have signed a BCA. Ofgem expect that in most cases there may need to be significant further engagement on connection optioneering between the developer and the SO in order to inform a needs case submission. Ofgem also expect early engagement between developers and Ofgem will help inform when the gateway assessment should be triggered.

m. Similarly, for the second gateway assessment, developers will be able to trigger the gateway assessment when they have sufficient information to enable Ofgem to conduct an informed assessment. Under the generator build option, Ofgem expect the timing of this gateway assessment to be as late as possible, to help ensure that the evidence provided in an offshore developer's submission remains up to date at the point at which significant final procurement decisions for the Offshore Wider Works are made.

14 Step 9: SO and offshore developers are providing support to Ofgem in the Gateway Assessment Process

n. Ofgem will be working with SO and offshore developer to further develop what information for gateway assessment process is required. The criteria and needs case requirements will be applicable to all projects, ensuring transparency of approach. However, given the unique technical requirements of offshore transmission and variation between projects, early engagement with developers ahead of a gateway assessment submission will provide an opportunity for Ofgem to provide further details on what information will need to be contained within an individual gateway assessment submission

15 Step 10: Ofgem approves the Offshore Wider Works developer - associated project

16 Step 11: In collaboration with offshore developer SO make sure that developer’s BCA remains in line with outcome of Ofgem gateway assessment process

17 Step 12: Offshore developer delivers the project in line with the BCA.
This diagram shows the overall Offshore Wider Works process. The text in each box corresponds to the descriptions of the stages explained in general process above. The numbers correspond to the step numbering in the text.
SO Process for Offshore Wider Works – Non Developer Associated

System Operator

<table>
<thead>
<tr>
<th>Version</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>June 2017</td>
</tr>
</tbody>
</table>

About this document

This document contains National Grid’s System Operator’s proposed process for Offshore Wider System Works – Non Developer Associated.
Contents

Offshore Wider Works – Non Developer Associated Overview ... 14
Offshore Wider Works – Non Developer Associated Process .. 15
Offshore Wider Works – Non Developer Associated Overview

18 Current offshore transmission assets have been developed as standalone connections to shore known as a radial connections. However, the Round 3 offshore wind projects are larger, more complex and at a greater distance from shore than those that have been developed so far; as a result there is likely to be the potential for efficiencies from greater coordination and integration of offshore transmission infrastructure. This could include coordination between offshore connections, and coordination of the strategic development of the wider network through offshore reinforcement projects.

19 Existing offshore transmission assets are designed as a radial links to allow the transfer of the power from the offshore generator to the onshore network, and are therefore the offshore asset rating is equal to size of wind farm. The non-developer-associated Offshore Wider Works is investment that would support reinforcement of the wider transmission network, but where developers are unwilling or unable to take forward the offshore wider works. Offshore Wider Works non developer-associated needs case is in many cases a substitute for onshore wider works and therefore is some way very similar to onshore wider works investment.

20 Currently there is no clear route for Offshore Wider Works to be taken forward where works not being undertaken by a developer. In last consultation in 2014 Ofgem set out their lead option: for onshore Transmission Owners (TOs) to undertake preliminary works for non developer associated Offshore Wider Works, followed by a late OFTO build tender to identify an OFTO to construct, operate and own the transmission assets.

21 As a result of consultation responses, Ofgem also considered other potential models for non developer associated Offshore Wider Works.

22 The potential future models for non developer associated Offshore Wider Works are the following:
 a. Split OFTO Build: an initial tender to determine a third party to undertake the preliminary works, followed by a late OFTO build tender to determine the party who will construct and own the assets
 b. Early OFTO Build: an early OFTO build tender to determine the party with responsibility for preliminary works, construction and ongoing operation of the assets
 c. TO Initiated Late OFTO Build: enabling TOs to undertake preliminary works ahead of a late OFTO build tender to determine the party who will construct, own and operate the assets.

3 Preliminary works” is a defined term in the 2013 Tender Regulations. Generally, it includes project development activity ahead of construction and does not include construction activities. For the purposes of this consultation, the definition of preliminary works within the 2013 Tender Regulations may be used as a guide, recognising that the scope of preliminary works under different non developer-led WNBI models may ultimately vary from the current definition depending on the most appropriate scope of works for non developer-associated Offshore Wider Works projects.
1. The coordination of offshore transmission assets could reduce the costs of the onshore system reinforcement requirements and potentially reduce the costs for the end consumers.

2. A non developer associated wider network benefit investment for Offshore Wider Works supports coordination of the development of offshore transmission assets and wider GB transmission network reinforcement. Offshore Wider Works non developer-associated is not limited to a specific connection offer and is the case where offshore generators are unwilling or unable to take forward the offshore wider works.

3. The following text describe the steps of the SO process for Offshore Wider Works non developer-led Needs Case.

4. Step 1: Identification of System Need. The need for non developer associated Offshore Wider Works will be identified by SO and the relevant TO. The system need for the Offshore Wider Works can be identified in the following ways:
 o. SO assesses the system need through an annual Electricity Ten Year Statement (ETYS) process, which subsequently informs the NOA Report.
 p. SO and TOs regularly discuss and review network capacity issues and the need for network reinforcement in a particular TO’s area at Joint Planning Committee (JPC) meetings. Based on that information TO will consider Offshore Wider Options as an option to reinforce the network.

1. Step 2: SO and relevant TO identify the Offshore Wider Works Options
 q. In collaboration with relevant TO the SO develops the Offshore Wider Works options.
 r. In developing Offshore Wider Works SO will take into the consideration two major transmission system design criteria: network capacity availability of local boundary and shortfall of the wider system boundaries.
 s. According to Chapter 2 of the NETS SQSS – Generation Connection design, the transmission system is designed to accommodate 100% of the transmission entry capacity at the connection point within a local boundary (e.g. for 1GW wind farm connection, the onshore system is designed to accommodate the complete 1GW generation and the offshore assets are sized to provide this full transmission entry capacity.)
 t. In planning the Main Interconnected Transmission System (MITS) however, under Economic Criterion (NETS SQSS, Appendix E) different scaling factors are applied to different types of generating plant i.e. Nuclear Power – 85%, Pumped Storage – 50%, Interconnectors – 100%, Wind, Wave and Tidal – 70% while conventional generation is scaled variably. In the case of wind, this implies that the assets are assumed to be 70% utilized by the wind generated. Taking into account all this scaling factors, the offshore infrastructure is allowing some spare capacity in the assets. It is this ‘spare’ capacity that provides the opportunity for offshore
wider works to be utilised as one of the options to provide boundary capability across a non-compliant boundary.

u. In providing the Offshore Wider Works design it is crucial SO and affected TO to work together and agree on the generation background, scenarios and sensitivities which will be used as a basis for the Offshore Wider Works designs. In this stage SO will inform Ofgem on agreed background and scenario which will form the basis for the Offshore Wider Works designs.

v. The benefits of the Offshore Wider Works will be also assessed by utilising a combination of operational actions to maximize the capability across the boundaries (e.g. actions included QB optimisation and redirection of flows in HVDC links).

w. Once SO and the affected TO agrees on Offshore Wider Works Options, the agreed Offshore Wider Works options are progressing into the Cost Benefit Analysis (CBA).

2 Step 3: Cost Benefit Analysis (CBA). SO will perform the CBA on the agreed Offshore Wider Works options from Step 2. The SO will lead the CBA depending on the preferred model for the non developer associated Offshore Wider Works.

3 In the model 1 (Split OFTO build) the preferred Offshore Wider Works options will be obtained in collaboration between TO and 3rd party. The 3rd party will be defined by Ofgem via tendering process.

4 In model 2 (Early OFTO build) the preferred option will be identified in collaboration between SO and OFTO. OFTO will be appointed by Ofgem via tendering process.

5 In the model 3 (Initiated late OFTO build) the preferred option will be determined in collaboration between SO and affected/relevant TO.

6 The Cost Benefit Analysis will be performed by SO and the objectives and scope of the CBA is explained below:

 a. The key economic objectives for CBA for Offshore Wider Works are:
 i. Ensure value for money for the consumers by delivering cost effective reinforcements to ensure economically efficient design and operation of the network.
 ii. Timely delivery of necessary reinforcement(s) to minimise any cost exposure for consumers to either early investment or delayed implementation.

 b. The objectives for Offshore Wider Works CBA are:
 i. To be consistent with Licence obligations and National Electricity Transmission System (NETS) Security and Quality of Supply Standards (SQSS), the analysis promotes economic and efficient investment.
 ii. To present economic justification for the preferred Offshore Wider Works designs and an explanation of how they compare with the alternative counterfactual case.
 iii. To present evidence on expected long-term value for money for consumers considering a range of sensitivities
 iv. To present evidence on optimal timing of the preferred reinforcement option.

 c. Driven by these objectives the scope of the CBA is:
i. To establish the reference case position in terms of constraint costs forecasts associated with the 'do minimum' network state, across different generation background scenarios.

ii. To model the economic impact, measured as constraint cost savings, for a range of designs, across a range of scenarios.

d. To undertake a CBA by:

i. Appraising the economic case of the options by adopting the Spackman⁴ approach and determining respective Net Present Values (NPVs) across the studied generation scenarios and sensitivities.

ii. Establishing worst regrets associated with each design/technology appraised.

iii. Identifying the Least Worst Regret option overall

iv. Assessing the impact of key sensitivities: increase in capital expenditure, and delays in delivery timeframes.

v. Make recommendations for the preferred option i.e. the Least Worst Regret solution, taking into consideration the impact of sensitivities.

7 Model 1: Split OFTO Build

a. Under the Split OFTO Build model, the preliminary works would be completed by a third party appointed through an Ofgem-run tender. If there is a needs case to proceed with construction, Ofgem would then run a late OFTO build tender. At the completion of the preliminary works, Ofgem would appoint an OFTO licensee to take ownership of the preliminary works and construct, own and operate the transmission assets.

b. Ofgem would run a first tender to license a third party to undertake the preliminary works and develop the project through to the securing of consents. Ofgem would select the successful bidder on the basis of the price of bids to complete the preliminary works as well as the evidence the bidder provides on its plans, capability and experience.

c. The successful bidder would complete the preliminary works and produce the relevant outputs needed to run a late OFTO build tender. The party undertaking the preliminary works would be expected to engage stakeholders and coordinate with other relevant parties, including affected developers, TOs and the SO. It would also be expected to support the eventual late OFTO build tender, undertaking activities such as populating the data room, responding to queries from bidders, and contributing to a smooth and timely tender process.

8 Model 2: Early OFTO Build

a. Under this model the OFTO would undertake the design work, consenting, procurement and delivery of the transmission assets work programme, as well as being responsible for the operation, maintenance and decommissioning of the assets. Ofgem would appoint an OFTO through an Ofgem-run tender either before, or during, the early stages of the preliminary works. The successful bidder would be selected based on its plans, capabilities and relevant experience, as well as its proposed fixed and indicative costs.

⁴ The Joint Regulators Group on behalf of UK’s economic and competition regulators recommend a discounting approach that discounts all costs (including financing costs as calculated based on a Weighted Average Cost of Capital or WACC) and benefits at the Social Time Preference Rate (STPR). This is known as the Spackman approach. Further details of our assumptions regarding WACC and STPR are presented later in this document.
b. The early OFTO build tender would be held on the basis of a high-level specification for the transmission assets, including associated preliminary works.

c. The OFTO would complete all preliminary works associated with the assets, including securing consents. As part of these works, the OFTO would work with the SO and relevant TOs to ensure that the assets it would be developing would form part of a coherent network design that meets both the high level specification and network requirements.

d. At the invitation to tender (ITT) stage, bidders would be likely to bid their desired Tender Revenue Stream (TRS) based on a combination of fixed and indicative costs, with indicative costs possibly subject to a capped contingency or a sharing mechanism. The specifics of the bid requirement would be defined in the ITT document for each tender. Ofgem also envisage that the OFTO’s revenue would be linked to the completion of key deliverables and outputs.

e. As the OFTO approached the completion of the preliminary works and ahead of construction, Ofgem would assess the needs case for the investment in more detail to determine whether proceeding to construction would be in the interests of consumers. If so, Ofgem would then engage with the OFTO to finalise its TRS to construct, own and operate the assets. As part of this process Ofgem would seek to fix the terms within the OFTO’s licence (such as its TRS) which would have been set on an indicative basis during the ITT and licence award stage.

9 Model 3: Initiated OFTO Build

a. In the December 2012 consultation, Ofgem set out an option where onshore TOs could submit proposals for funding to undertake the preliminary works for non developer associated Offshore Wider Works, followed by a late OFTO build tender to identify an OFTO to construct, own and operate the assets.

b. Ofgem stated that the TO would work with the SO to identify the Offshore Wider Works opportunity and develop a corresponding needs case. There is the possibility that such a route would use a mechanism in the onshore TO licences (which would need to be introduced complementary to the onshore price control processes) to allow the TO to recover its cost of preliminary works for a project should Ofgem deem the works to be in the interests of consumers.

c. The TO would complete the preliminary works and produce the outputs needed to run a late OFTO build tender. The TO would be expected to engage stakeholders and coordinate with other relevant parties, including affected developers and the SO. It would also be expected to support the subsequent late OFTO build tender if it goes ahead, undertaking activities such as populating the data room, responding to queries from bidders, and contributing to a smooth and timely tender process. The late OFTO build tender would be similar to the approach set out in our May 2012 consultation on developer-led late OFTO build, with adaptations if necessary to reflect that the preliminary works were undertaken by a TO rather than a developer.
This diagram shows the overall Offshore Wider Works Non Developer – Associated process. The text in each box corresponds to the descriptions of the stages explained in general process above.