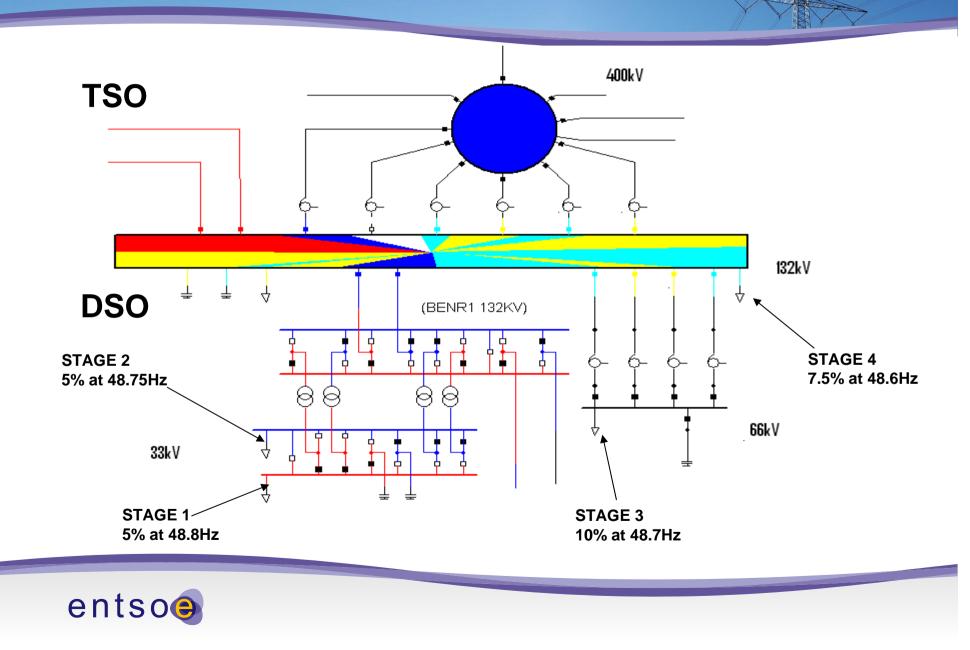
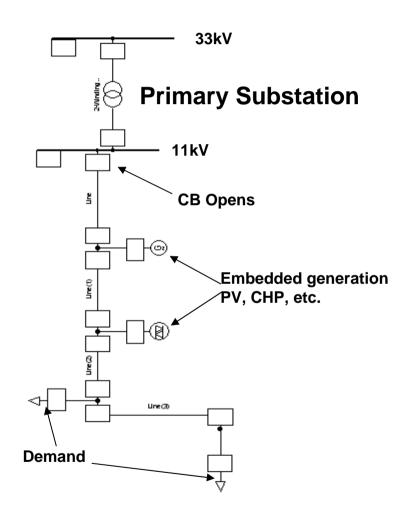
Demand Connection Code Public workshop Call for Stakeholder Input

Demand Side Response Delivering System Frequency Control

26th April 2012 – London ENA



In the context of severe frequency events, introduction of large scale RES introduces two major new challenges.


- 1. RES delivered via power electronic converters severely reduces system inertia (ability to slow down frequency change).
- 2. The second challenge arises from the need for a means to cope with extreme events via defence plan measures, most notably Low Frequency Demand Disconnection (LFDD). As per Diagram A on next slide

DSR Delivering SFC – Diagram A (LFDD)

DSR Delivering SFC

Deploying STAGE 1

The required 5% of demand reduction in MVA is not achieved.

Due to the mix of embedded generation and demand, connected to the selected circuit, this may yield 3% rather than 5% of demand reduction.

Therefore, increases the overall generation deficit.

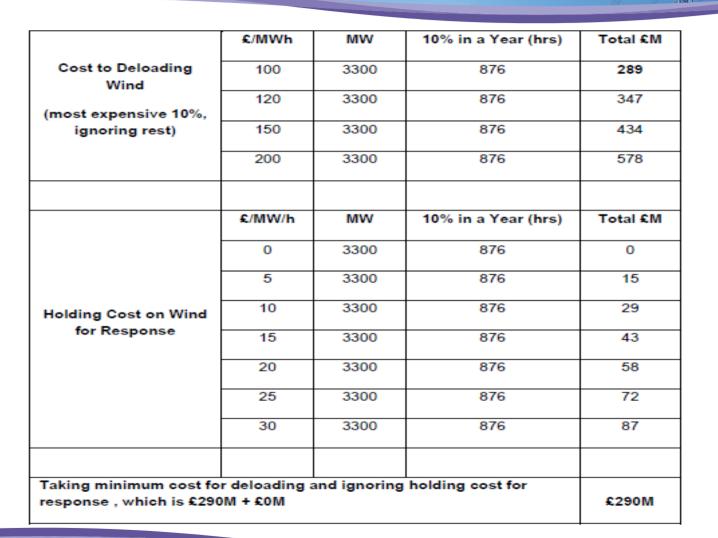
DSR Delivering SFC – Smarter LFDD

The net annual savings of energy, capacity payment and rare historic events, are factors greater than the capital cost of implementing DSR SFC.

To demonstrate the impact of developing a market based delivery of DSR SFC and therefore excluding all other benefits and focusing on purely rare historical events.

MWh Value of Lost Load in Euros	MW available	Total benefit value of DSR in Euros	€ Euro Capital cost		€3 Euro Capital cost		€5 Euro Capital cost	
10270	1300	13M	29	Years	19	Years	12	Years
10270	639	7M	14	Years	10	Years	6	Years
12500	639	8M	18	Years	12	Years	7	Years
25000	639	16M	35	Years	23	Years	14	Years

Normal Frequency Management Related to Extreme RES Penetration – GB case study


- The following case study shows the opportunities given by the use of temperature controlled devices in frequency management, for normal frequency response.
- Temperature controlled demand which has a target temperature with a small difference between the temperature it turns on and the temperature it turns off, is ideally suited to deliver such a service without inconvenience to the end user.

What are the ALTERNATIVES?

- Alternative 1: Voluntary service capability mandatory usage
- Alternative 2: Voluntary service capability voluntary use
- Alternative 3: Capability as standard, with mandatory delivery
- Alternative 4: Do nothing

DSR Delivering SFC – Frequency Response

entso

DSR Delivering SFC – Frequency Response

Temeperature Control Potential for DSR	Total MW Potential for DSR	Total Net MW with load factor	Install/Replacement MW per year		
Domestic Refridge/Freezer	2000	400	40		
Commercial Air Conditioning	2800	840	84		
Domestic Heat Pumps	1400	700	70		
Industrial Refridge/Freezer	2600	260	26		
	8800	2200	220		

The potential Demand Side Response is governed by the duty cycle/load factor and the volume of new installed capacity each year, which is estimated as:

- 20% Domestic refrigeration yields 40MW / year
- 30% Commercial air conditioning yields 84MW / year
- 50% Heat Pumps yields 70MW / year
- 10% Industrial refrigeration yields 26MW / year

The cost in £M / year per 100MW of frequency response for the 4 alternatives is calculated. Also illustrating, at the end of a ten year period (replacement/installed) the accumulated MW available and cost will defer for each alternative, each compared with the holding cost for wind for 10% of that year when wind exceeds demand.

Alternatives		Dom F/F Com Air		m Air Con	Dom H/P		Indus F/F		Total	Total	Summary	
		MW	Cost £M	MW	Cost £M	MW	Cost £M	MW	Cost £M	MW	Cost £M	£M/100MW
1	Voluntary / Mandatory 20% take-up	80	3	168	3.6	140	2.4	52	1.8	440	10.8	2.5
2	Voluntary / Voluntary 10% take-up	40	32.5	84	7.8	70	5.2	26	3.9	220	49.4	22.5
3	Mandatory + Mandatory	400	10	840	2.4	700	1.6	260	1.2	2200	15.2	0.7
4	Do nothing constraint wind (nuclear for reserve)	0	0	0	0	0	0	0	0	2200	290	13.2

QUESTION to STAKEHOLDERS???

ENTSO-E believes these services below can be introduced for new appliances (and temperature controllers) without any detectable difference to the primary purpose of the service of the appliance. Can you share any specific knowledge or experience and associated data you may have on the following topic?

Regarding the DSR application related to temperature controlled demand to deliver a smarter, robust and a more user friendly <u>LFDD-capability</u> to avoid frequency collapse and hence contain the impact of rare events with large system frequency

Regarding the use of the temperature controlled demand beyond LFDD-capability for <u>frequency response</u>

