

Joint European Standing Group (JESG) Electricity Grid Connections

Tom Ireland 12th October 2011

European Network Code Development Process

FrameWork GuideLine on Grid Connections nationalgrid What has ACER published in its FWGL?

A document dated 20th July entitled:

"Framework Guidelines on Electricity Connections"

- This identifies the Scope of the 4 Network Codes relating to Grid Connections:
 - Requirements for Generators (RfG)
 - Demand Connection Code (DCC)
 - HVDC Connection Code (HCC)
 - Connection Procedures Code (CPC)

What is happening next?

- FG requires completion of RfG by end March 2012
- ENTSO-Es view:
 - Fundamental changes which justifies full year for RfG
 - Request expected from ENTSO-E to ACER for extension
- Drafting team to conclude initial version this week
 - DSO workshop and wind industry session undertaken
- Industry Consultation during Feb March 2012
 - 1500+ comments on Pilot code could be similar volume at formal stage - will take time to consider

Significant Grid User

The RfG pilot had proposed a graded approach

- Classification based on size & connection voltage and offshore on configuration of connection.
- Types A applies from 400W
 - Minimum significance
 - Minimum requirements, focused on common mode failure, f related
- Type D connected at 110kV or above
 - Max significance
 - Full requirements
- Additional parameters set at Synchronous Area or at national level
- Update: Nationally MW boundaries between A to B and B to C may be lowered but not raised

Current thoughts on implementing a Cost Benefit Analysis for retrospective national grid application

- Each TSO will select candidate parts of code for full qualitative analysis
- This initial assessment undertaken on a national basis
- Assessment will be based on both cost and benefit "traffic lights"
- Green lights result in quantitative Cost Benefit Analysis
- Red light(s) will end process
 - FWGL allows topic to be reviewed after three years

Quantitative CBA

- Generators provide cost data to TSO
- TSO performs CBA using codified methodology
 - If negative no further action taken
 - If results positive, public consultation issued
- If result of consultation is positive, TSO issue a final report to NRA (Ofgem)
- NRA issue decision for implementation

Your questions on RfG?

What is happening on the Demand Connection Code?

- Performance issues for interface between TSOs & DSOs
- Performance including demand side response for
 - Directly (TSO) connected demand
 - DSO connected demand
- Expect to cover non optional aspects such as:
 - For frequency stability
 - For voltage stability
- Various customer choice aspects for services from a T perspective:
 - Operating reserves
 - System constraints at T level
 - Time of use flattening demand curve (outside code?) ⁹

What is happening on the Demand Connection Code?

When?

- To be completed including consultation by end 2012 / early 2013.
- Some preparation started based on ACER's FWGL although go-ahead from EC not until early 2012
- How is ENTSO-E working on the DCC?
 - A separate drafting team (DT DCC) established
 - Working on first draft in readiness for stakeholder workshop in January 2012
 - Regular meetings with the DSO Expert Group (DEG) with 2 GB reps

Demand Response Services

Services being considered by the Drafting team:

- Frequency response from temperature controlled demand
- Services for reserve Electric Vehicles via smart meters
- Low Frequency Demand Disconnection 60% of 100% rather than 100% of 60% (9 stages)
- Network Constraints

Your questions on DCC?

Finally, any further questions?