

**Battery Developments** 

Future Energy Scenarios 2012

Denis Naberezhnykh

27<sup>th</sup> September 2012



#### **EV Battery Reuse**

TSB co-funded project

Technology Strategy Board Driving Innovation

 "Feasibility of re-using electric vehicle batteries for electricity storage in the utilities sector" (TSB ref: 130712)

Partners:









- Focus: Assess the feasibility of using EV battery technology in in second life applications in the energy utilities sector.
- Report available early to mid-October.









#### Performance

- Open Circuit voltage of ~4V
- Specific Energy between 100Wh/kg and 150Wh/kg

| Most likely chemistries                                   | Advantages                                                                                                                              | Disadvantages                                                                                  |
|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Lithium nickel, cobalt and aluminium (NCA)                | <ul><li>✓ Market ready</li><li>✓ Energy density, cycle stability and cold start</li></ul>                                               | × High cost                                                                                    |
| Lithium nickel, cobalt and manganese (NCM)                | <ul><li>✓ Market ready</li><li>✓ Energy density, cycle stability and cold start</li></ul>                                               | × High cost                                                                                    |
| Lithium manganese spinel (LMS)                            | <ul><li>✓ Comparatively low cost</li><li>✓ Safety performance</li></ul>                                                                 | × Lack of thermal stability of cathode material                                                |
| Lithium iron phosphate (LFP)                              | <ul><li>✓ Improved cycle stability (longer life)</li><li>✓ Low cost</li></ul>                                                           | × Only recent developments<br>overcome cold start and high<br>temperature aging                |
| Lithium titanate (LTO) and Manganese spinel (MNS and MS). | <ul><li>✓ Particularly strong cycle stability</li><li>✓ Excellent safety characteristics</li><li>✓ Suitable for fast charging</li></ul> | <ul><li>× Lower cell voltage</li><li>× Reduced capacity</li><li>× Emerging chemistry</li></ul> |









- Cost estimates range between £450-1000 per kWh at present
- For scaled production (>100,000 cells per year), costs in 2011/ 2012 are expected to be around the £320 per kWh mark
- Projected to be as low as £160 per kWh by 2020



Figure 3: Cell component cost breakdown, Source: (Lowe, Tokuaka, Trigg, & Gereffi, 2010)



National Laboratory, 2000)









## Tracking and monitoring











Use in the energy industry

- Possible reuse scenarios include:
  - Investment deferral for DNOs
  - Use of batteries with renewables in commercial (light industrial) premises
  - Firm Frequency response (FFR)
  - Fast reserve (FR).
- Consortium developed a model / tool that can be used to estimate technical feasibility and Net Present Value
  - Very high NPV based on current value of service.









#### Use in the energy industry

#### FFR



Source: National Grid



FR



Source: National Grid











# Thank you

Denis Naberezhnykh TRL, Senior ITS Consultant

Tel: 01344770689

Email: <a href="mailto:dnaberezhnykh@trl.co.uk">dnaberezhnykh@trl.co.uk</a>

