UK Energy Futures

Richard Smith Head of Energy Strategy & Policy

September 2012

Our 2012 scenario development

Axioms and your feedback

An axiom is a premise or starting point of reasoning. It is a logical statement assumed to be true.

The first GB large scale commercial (gas or coal) CCS station will become operational in:

Slow Progression

Overview

- Government climate targets missed / abandoned
- Continued economic hardship, low GDP growth
- Limited energy efficiency / Green Deal impact
- Domestic gas demand broadly flat, higher in power generation

Main changes vs 2011

Electricity demand

Nuclear generation

Renewable generation

Interconnection

Thermal generation

Heat pump deployment

Electric vehicle deployment

2020 targets

Targets performance

2020	renewable	×
	carbon	\checkmark
2030 carbon		×
2050 carbon		×

Gone Green

Overview

- Government climate targets met, balanced approach
- Modest GDP growth in medium term at historic averages
- Energy efficiency is driven / Green Deal is effective
- Gradual decline in gas demand

2011 scenario outcome

Main changes vs 2011

Electricity demand

Nuclear generation

Renewable generation

Interconnection

Thermal generation

Heat pump deployment

Electric vehicle deployment

Targets performance

2020	renewable	\checkmark
	carbon	\checkmark
2030 carbon		✓
2050 carbon		✓

2012 scenario outcome

Accelerated Growth

Overview

2011 scenario outcome

- Government climate targets met early
- Sustained economic growth in medium to long term
- Significant energy efficiency
- Significant reduction in gas demand

Main changes vs 2011

Electricity demand

Nuclear generation

Renewable generation

Interconnection

Thermal generation

=

Heat pump deployment
Electric vehicle deployment

Targets performance

2020	renewable	✓
	carbon	\checkmark
2030 carbon		✓
2050 carbon		✓

2012 scenario outcome

Economic background

Slow Progression

- EU economic hardship
- Scarcity of finance
- Low GDP growth

Gone Green

- Modest GDP growth in the medium term
- Historical average from 2017

Accelerated Growth

- Sustained economic growth across Europe
- High GDP growth

GDP growth (indexed to 2011)

Fuel prices

Slow Progression

- Wholesale prices flat to 2015
- Low carbon price
- 2030 prices similar to today

Gone Green

- Hydrocarbon fuel prices increase steadily from 2015+
- Carbon price increases

Accelerated Growth

- All fuel prices rise strongly
- Gas & oil prices linked
- Carbon price at EMR floor

Wholesale gas price (p/therm)

Transport

Slow Progression

- Modest EV growth
- More hybrids in early years, more pure EVs in later years

Gone Green

- Strong EV growth
- More hybrids in early years, more pure EVs in later years

Accelerated Growth

- Robust EV growth
- More hybrids in early years, more pure EVs in later years

Electric vehicles (million)

Heat

Slow Progression

- Modest heat pump growth
- Limited insulation uptake

Gone Green

- Strong heat pump growth
- Strong insulation uptake

Accelerated Growth

- Robust heat pump growth
- High insulation uptake

Residential heat pumps (million)

Electricity demand

Slow Progression

- Annual demand broadly flat
- Peak demand flat / falling

Gone Green

- Economic growth, heat & transport electrification
- Peak demand grows steadily

Accelerated Growth

 Reflects greater economic growth and electrification of heat & transport

Annual electricity demand (TWh)

Electricity generation

Slow Progression

- Extension of existing plant; new gas generation
- Slower low CO₂ deployment

Gone Green

- Balanced approach
- Contributions from different technologies

Accelerated Growth

- Faster low CO₂ deployment
- Strong micro generation deployment

Gas demand

Slow Progression

- Higher domestic & power generation demand
- Peak demand broadly flat

Gone Green

- Steady decline in domestic & power generation demand
- Peak demand ~25% lower

Accelerated Growth

- Strong decline in domestic & power generation demand
- Peak demand ~40% lower

Annual gas demand (TWh)

Gas supply

Slow Progression

- Higher UKCS & Norwegian supply; higher global LNG
- New seasonal storage

Gone Green

- Balanced approach
- Flexible storage driven by market requirements

Accelerated Growth

- Lower UKCS & Norwegian supply; tight global LNG
- Storage under construction

The future: efficiency, decarbonisation and electrification

