

LionLink Statutory Consultation

Project overview document

January 2026

LionLink:

Contents

- 6 The need for LionLink
- 8 About National Grid Ventures
- 10 Our approach to developing our proposals
- 14 How feedback has informed our proposals
- 20 Our proposals
- 41 Environmental approach
- 42 Coordination with other projects in the area
- 44 Community benefit
- 46 Find out more
- 49 Have your say
- 50 Information for landowners
- 52 Next steps
- 54 Glossary

NGV brings nearly four decades of expertise to LionLink, having successfully delivered six operational interconnectors across its portfolio.

Foreword

We are facing a generational change in how we produce and transmit energy. The UK Government has set legally binding targets to reduce reliance on fossil fuels and cut carbon emissions while ensuring a secure, resilient and affordable electricity supply.

In response, National Grid Ventures (NGV) is developing plans to build LionLink, a new subsea electricity cable (known as an interconnector) between the UK and the Netherlands. LionLink is a first of its kind technology, which will connect to the Dutch offshore windfarm, Nederweik 3.

LionLink will enable the cross-border transmission of clean electricity with the capacity to deliver up to 2 gigawatts (GW) of electricity, which will be vital in supporting greater energy security and delivering more affordable energy for consumers. NGV brings nearly four decades of expertise to LionLink, having successfully delivered six operational interconnectors across its portfolio.

LionLink will deliver enough energy to power 2.5 million homes. It will play an important role in keeping household energy bills down and providing the UK with a secure and reliable energy supply.

LionLink will enhance energy security by allowing countries to share electricity, improving grid resilience during periods of high demand or when renewable generation is low. It also allows the UK to export power when we're in periods of energy surplus.

National Grid Lion Link Limited (NGLLL), which forms one aspect of the NGV portfolio, is the Applicant that will be submitting to the Planning Inspectorate (PINS) for a Development Consent Order (DCO). The application would be submitted in 2026.

Our interim non-statutory consultation feedback summary report and supplementary non-statutory consultation summary report outlines the options we previously consulted on, and how feedback we received informed the development of our proposals to date. This includes our landfall selection process, which we explained in our spring 2025 community newsletter. These, and all previous consultation documents, are available in the library on our dedicated project website.

In line with the Planning Act 2008, we are legally required to consult with the community and stakeholders before the application for development consent is submitted to PINS. We must also demonstrate that feedback received has been considered in finalising our application.

This statutory consultation provides detailed information on our proposals, including supporting environmental assessments. It also describes how the project has evolved since our previous non-statutory consultation in 2023. The consultation will run from 13 January to 10 March 2026.

We welcome your feedback on our proposals. Your views – alongside planning policy, and technical and environmental assessments will help shape the final design.

To help inform your response, please read the documents available and ask our project team if you have any questions. You can contact us at info@lionlink.nationalgrid.com or call **0800 083 1787**.

We look forward to welcoming you at one of our in-person exhibitions or community webinars.

Yours sincerely,

Alex Marsh
LionLink Project Director

Informed by consultation feedback and extensive environmental and technical assessments, we now have our preferred options:

- **Kiln Lane Substation;**
- **Proposed underground high voltage alternating current (HVAC) cables between Kiln Lane Substation and the proposed converter station east of Saxmundham;**
- **Proposed converter station east of Saxmundham;**
- **Proposed underground high voltage direct current (HVDC) cables between the proposed converter station east of Saxmundham and a proposed landfall site at Walberswick;**
- **Proposed landfall site at Walberswick; and**
- **Proposed offshore HVDC cables from the proposed landfall site at Walberswick at the UK coast, to the edge of the UK's Exclusive Economic Zone (EEZ).**

The need for LionLink

The UK is rapidly transforming its energy system, moving away from fossil fuels and toward clean, low-carbon technologies.

International electricity interconnectors are a key part of this strategy. They enable the sharing of renewable energy between countries, improving system resilience, reducing costs and making energy more sustainable.

By enabling the rapid transfer of electricity between markets, interconnectors enable energy to be imported and exported depending on the needs of the market and in line with market prices.

Offshore Hybrid Assets

LionLink is an Offshore Hybrid Asset (OHA). OHAs are seen as the next generation of interconnector, that will connect offshore wind farms to multiple countries.

In addition to facilitating the sharing of energy between countries, OHAs will also help to speed up the connection of offshore wind and maximise the use of wind generation. They will also reduce the impact on local communities by reducing the amount of connection points and onshore infrastructure required to connect cleaner energy to the shore. The North Sea holds significant potential for both the UK and Europe to achieve significant increases in offshore wind energy.

Interconnectors are also an effective tool to support the intermittent nature of renewable energy and help to support the network when demand is high.

Great Britain has experienced success from existing interconnectors, which have connected energy between GB and Belgium, Denmark, France, Ireland and the Netherlands.

LionLink's role

The UK Government has recognised the significant role that international electricity interconnectors play in facilitating a secure, stable and clean energy system. Accordingly, the Government's National Policy Statements acknowledge the importance and benefits of increasing levels of interconnection as part of national planning policy, and there is wide energy policy support for increased interconnection development.

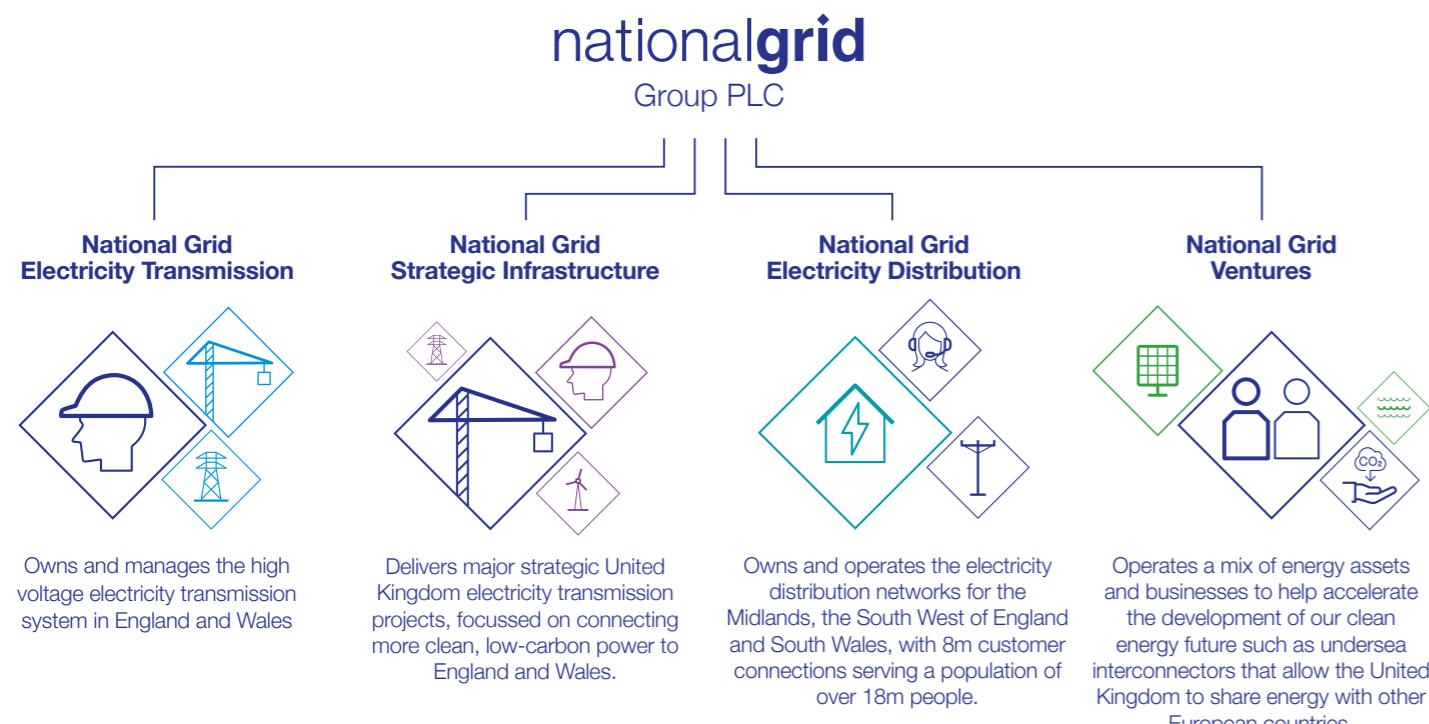
Ofgem, the UK's energy regulator, has made an initial project assessment and consider that LionLink is likely to be in the interest of GB consumers, granting the project a Pilot OHA regulatory regime in principle. This decision is supported by National Electricity System Operator's (NESO) System Impact Assessment Report.

If approved, LionLink would continue to boost interconnector capacity, and contribute towards the UK government's commitment of reaching net zero by 2050.

LionLink has the potential to deliver on core aspects of the UK Government's energy strategy, it supports a reduction in carbon emissions; contributes towards addressing the current unreliable nature of renewable energy supply and it provides the security, stability and cost savings that are associated with interconnectors. It is a step towards a more coherent and therefore more efficient electricity transmission network.

Our connection point

When determining the connection point for LionLink, NESO, which oversees the strategic planning of Great Britain's electricity grid, assessed a range of environmental, technical, and cost factors. Following discussions with NGV, NESO identified East Suffolk as the optimal connection point for LionLink in Great Britain. In 2017, NESO granted a connection agreement for the project to link to a new substation in the Leiston area. This has been re-confirmed through a modification to the connection agreement in June 2025. The proposed connection point is also consistent with the findings of NESO's East Anglia Study.



About National Grid Ventures

National Grid Ventures (NGV) is part of the National Grid Group but operates independently, focusing on investments in energy projects, technologies, and strategic partnerships.

While it functions autonomously, NGV is regulated alongside the wider National Grid Group to ensure its activities contribute to keeping the lights on, decarbonising the economy, and building a more secure, resilient, and affordable energy system for Britain.

NGV currently operates six interconnectors with a combined capacity of 7.8 GW, including BritNed (which we have now operated for 15 years), IFA1, IFA2, Viking Link, North Sea Link and Nemo Link.

Our approach to developing our proposals

Overview of our development process

Our approach to developing LionLink is informed by environmental considerations, technical feasibility and stakeholder input. Following securing our connection agreement, engagement with statutory bodies, local authorities, community groups, landowners and technical stakeholders has been continuous. This means that LionLink has been able to receive and address feedback across all subsequent key phases. These include:

Phase 1

Securing a connection agreement

NGV applied to NESO for a connection point for LionLink, which undertook an appraisal process to identify a point of connection on its network. This included an assessment of environmental, socio-economic, technical, and cost factors, which concluded that East Suffolk was the optimal connection point.

In 2017, NGV received a connection agreement from NESO to connect to a new substation in the Leiston area. Following discussions with NESO, it has been agreed that LionLink would connect at Kiln Lane Substation, which already benefits from ScottishPower Renewables' (SPR) existing consent and has the capacity to be extended to facilitate the project.

Phase 2

Siting and routeing options

The grid connection point at the Kiln Lane Substation was used as the geographic starting point to identify a longlist of potential siting and routeing options for the landfall site, converter station site and associated cable corridors.

In generating the longlist of options, we considered a range of onshore and offshore factors, including environmental and technical. The full list of considerations and the process for identifying the shortlisted options can be found in the Options Siting and Routeing Report, which has been published as part of this consultation.

Our technical specialists then assessed each aspect of the proposals to determine a shortlist of landfall and converter station locations, which would be included in our non-statutory consultation. Preliminary options for offshore cable routes were also considered. This assessment considered opportunities for co-location and coordination with other major energy infrastructure projects in the region.

Phase 3

2022 non-statutory consultation

The shortlisted onshore siting options and cable route search area were subject to a non-statutory consultation between October and December 2022. Following the non-statutory consultation, further assessments were undertaken to consider constraints and opportunities, as well as potential mitigation measures for the shortlisted options, alongside feedback received from the consultation.

- In response to the consultation feedback we received and technical and environmental considerations, we identified two further options; an alternative landfall site at Walberswick (referred to at the time as G2), and an onshore underground HVDC cable corridor to the north of Southwold.

Phase 4

2023 supplementary non-statutory consultation

A supplementary non-statutory consultation was held between September and November 2023. This consultation included the options presented during the 2022 non-statutory consultation, alongside the two alternative options described above (alternative landfall site at Walberswick (G2), and underground HVDC cable corridor to the north of Southwold).

Phase 5

Emerging preferences

Following the supplementary non-stat, we analysed the feedback we received and carried out further technical studies and environmental surveys to identify our emerging preferences.

We discounted Aldeburgh, our original Walberswick site, and Dunwich. Southwold and the alternative Walberswick site were identified as the two emerging landfall preferences. We also identified Saxmundham as the preferred area for the converter station, given the opportunity for coordination and co-location with NGET's Sea Link project.

What is Sea Link?

Sea Link is a new 2 GW subsea HVDC link between Suffolk and Kent being developed by NGET to reinforce the electricity network. Sea Link has now submitted its application for development consent to PINS and is currently undergoing examination.

We are exploring coordination opportunities with Sea Link to reduce disruption to local communities.

Phase 6

Identifying our preferred landfall site

Following extensive analysis, Walberswick was chosen as the preferred landfall site alongside its associated cable route. We set out the main reasons for this decision in our spring 2025 community newsletter, which is available in the library of our dedicated project website.

Phase 9

Application submission, examination and decision

We will submit the application for development consent to PINS. We anticipate there will be a six-month period for examination, followed by a 3-month period for PINS to publish their recommendation report. There will be a further 3-month period after which the Secretary of State for Energy Security and Net Zero makes a decision on our application.

Phase 7 Current stage

Statutory consultation

We are now consulting on these preferred options during this statutory consultation.

We are publishing our Preliminary Environmental Information Report (PEIR) as part of this consultation. This precedes the Environmental Statement, which will be submitted as part of our application. Chapter 2 of the PEIR outlines what these options are for development consent.

Phase 10

Construction

If consent is granted by the Secretary of State, we anticipate that construction would begin in 2028.

Phase 11

Operation

The construction period is expected to last up to five years. We anticipate that LionLink will be operational by 2032, although this will not involve continuous construction in all areas throughout that time.

Phase 8

Refinement of proposals

Following the statutory consultation, we will review feedback we receive and further refine our proposals where appropriate, which will form the basis of design for the application for development consent. We will then update our environmental assessments and prepare our application documents. We will also seek to enter into negotiations for voluntary agreements with affected landowners and other parties for the land rights that we require.

What is the PEIR?

Our Preliminary Environmental Information Report (PEIR) considers the potential effects on each area of our proposals on the environment, along with the measures we are proposing to mitigate these impacts. It is organised by topic, such as air quality, noise, biodiversity, and landscaping.

The report, along with a non-technical summary of its findings, is available on our dedicated project website.

How feedback has informed our proposals

First non-statutory consultation – 2022

Between 24 October and 18 December 2022, we held our first non-statutory consultation, outlining our initial siting and routeing options. These included landfall sites at Southwold, Aldeburgh, Dunwich and an initial Walberswick option, alongside several converter station site options.

We refined our proposals as a result of feedback we received during our first non-statutory consultation. The changes included:

- An alternative landfall site at Walberswick, which was considered to have the potential to reduce access constraints and traffic impacts.
- An alternative underground HVDC cable corridor to the north of Southwold, which was considered to have the potential to reduce impacts on designated sites of ecological importance.

Feedback from our first consultation is reflected in our interim non-statutory consultation feedback summary report.

Key statistics from our first two non-statutory consultations:

In-person events

- Eight in-person events
- Over 1,800 attendees to our in-person events

Website visitors

- Over 19,000 website visitors

Webinars

- Four webinars
- Over 200 attendees to our online webinars

Feedback

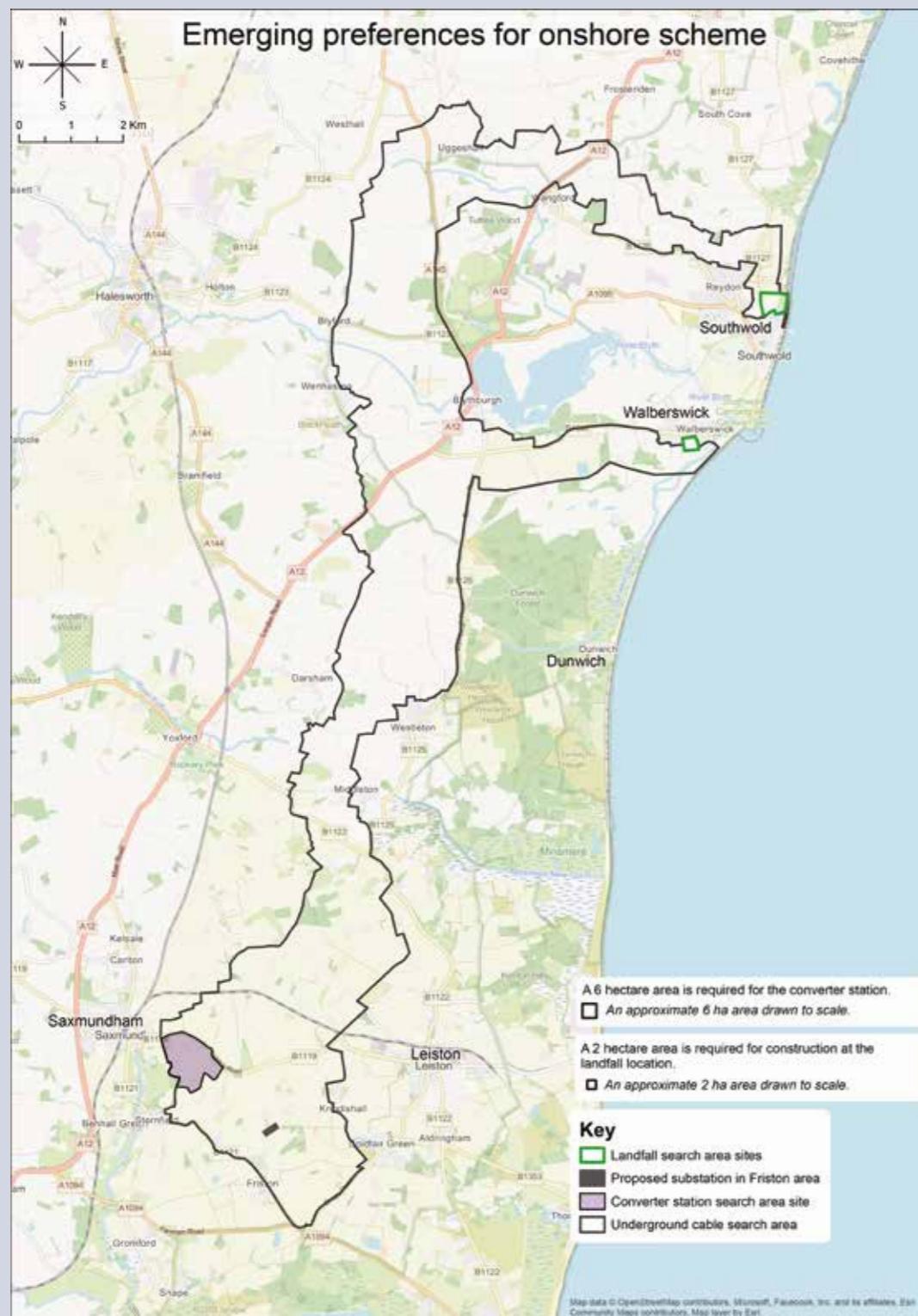
- Over 1,500 submissions of feedback received

Second non-statutory consultation – 2023

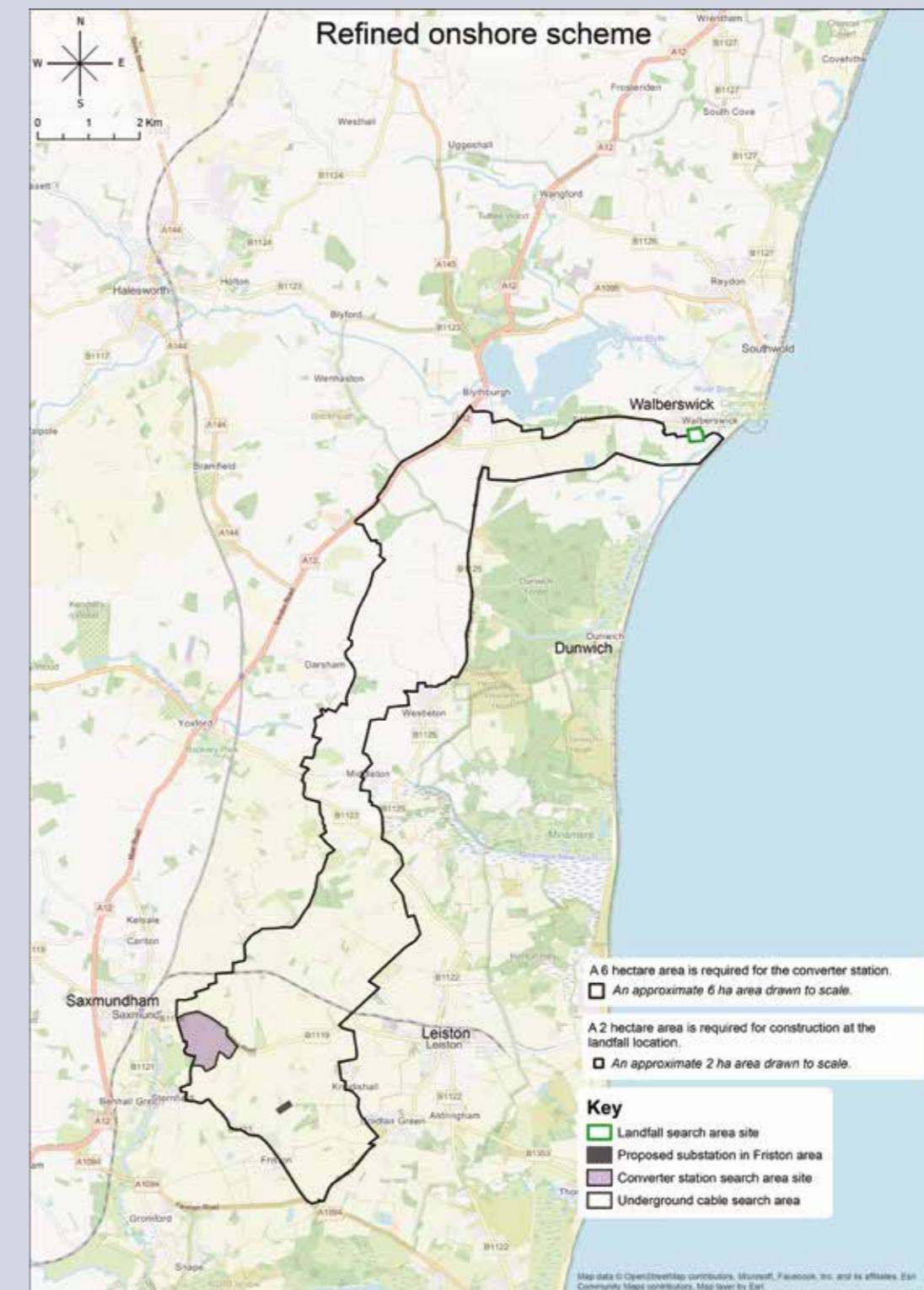
After identifying an alternative landfall site at Walberswick and an alternative underground HVDC cable corridor to the north of Southwold, we held a second non-statutory consultation.

Our aim was to make sure the community and statutory stakeholders were able to provide feedback on these alternative options, alongside the original siting and routeing options we had proposed. This consultation took place between 8 September and 3 November 2023.

Following this, in Spring 2024 we published a supplementary non-statutory consultation summary report. This report covers our first and second consultations.



What has changed since our second non-statutory consultation in 2023?


Feedback received during both non-statutory consultations was used to refine the options for the project prior to submitting an Environmental Impact Assessment Scoping Report to PINS in March 2024.

The maps below set out the changes we have made to our proposals following our second non-statutory consultation in 2023, including those options which were discounted.

Options following second non-statutory consultation

2025 preferred options

Converter station sites

In 2024 we discounted three converter station sites during this time. These were:

- North of Aldeburgh Road
- North west of Leiston
- West of Leiston

These sites were discounted during the options appraisal due to a combination of factors. These included technical constraints, environmental and visual impacts.

A converter station located east of Saxmundham was identified as our preferred option, as it would benefit from co-location and coordination with Sea Link. This was favoured in the 2023 non-statutory consultation feedback as a way to minimise cumulative impact. The site can also be screened from the road, helping to further reduce visual impact.

Discounted landfall sites

In 2024 three landfall sites were also discounted during this time. These were:

- Aldeburgh
- Original Walberswick option
- Dunwich

Aldeburgh presented significant offshore environmental and technical challenges. Specifically, this option would require the longest offshore cable route of the shortlisted options. The route would cross a substantial number of existing cable corridors within European designated sites, including the Outer Thames Estuary Special Protection Area (SPA), where impacts could not be mitigated. To cross these cables, concrete or rock would be placed on the seabed to protect the existing cables, leading to permanent loss of seabed and disruption to the marine environment. Additionally, this option poses risks to the Coralline Crag formation, a unique geological feature, and could interfere with local fishing netting grounds.

The **original Walberswick option** was ruled out due to the temporary loss of the beach car park and beach huts during construction, as well as construction traffic crossing the narrow bridge over the Dunwich River and passing through the centre of Walberswick.

Dunwich was discounted owing to the likelihood of adverse impacts on local heritage, particularly the archaeological asset around the site. There were also technical constraints associated with construction at landfall via a trenchless installation method. This was due to the steep cliff face and speed of coastal erosion in the location, alongside any temporary visual impacts on the character of the village.

Following this, the **alternative Walberswick** and **Southwold** landfall site options were identified as emerging preferences based on their potential to reduce access constraints, traffic impacts and ecological sensitivities.

Preferred landfall 2025

In February 2025, following further technical work, we discounted the Southwold landfall and associated cable corridor route and selected the **alternative Walberswick** site as the preferred landfall.

Walberswick was selected because the underground HVDC cable corridor to Saxmundham is shorter than the Southwold landfall site option (19.9 km compared to 32.8 km). In addition to having a smaller overall footprint, the Walberswick option presents a lower combined environmental impact and decreased disruption to residents when considering the full route of the project.

In comparison to the cable route associated with landfall at Southwold, the Walberswick option would require a cable route which is 12.9 km shorter, which would reduce the construction timeline and require fewer materials, construction sites, and vehicle movements. It also involves fewer crossings of roads, waterways, and utilities, and results in reduced loss of trees and hedgerows.

Both onshore cables routes would require some construction within the Suffolk & Essex Coast & Heaths National Landscape and Suffolk Heritage Coast. The shorter onshore route associated with the Walberswick option would have a reduced impact on these designations.

Additionally, Walberswick offers a more sustainable coastal location than Southwold, being less vulnerable to erosion. In making this decision, the project team has carefully analysed the combined impact of the landfall sites and cable routes (onshore and offshore) for the Walberswick and Southwold options. Further information on our landfall site selection can be found in our Spring 2025 Newsletter, available in the library of our dedicated project website.

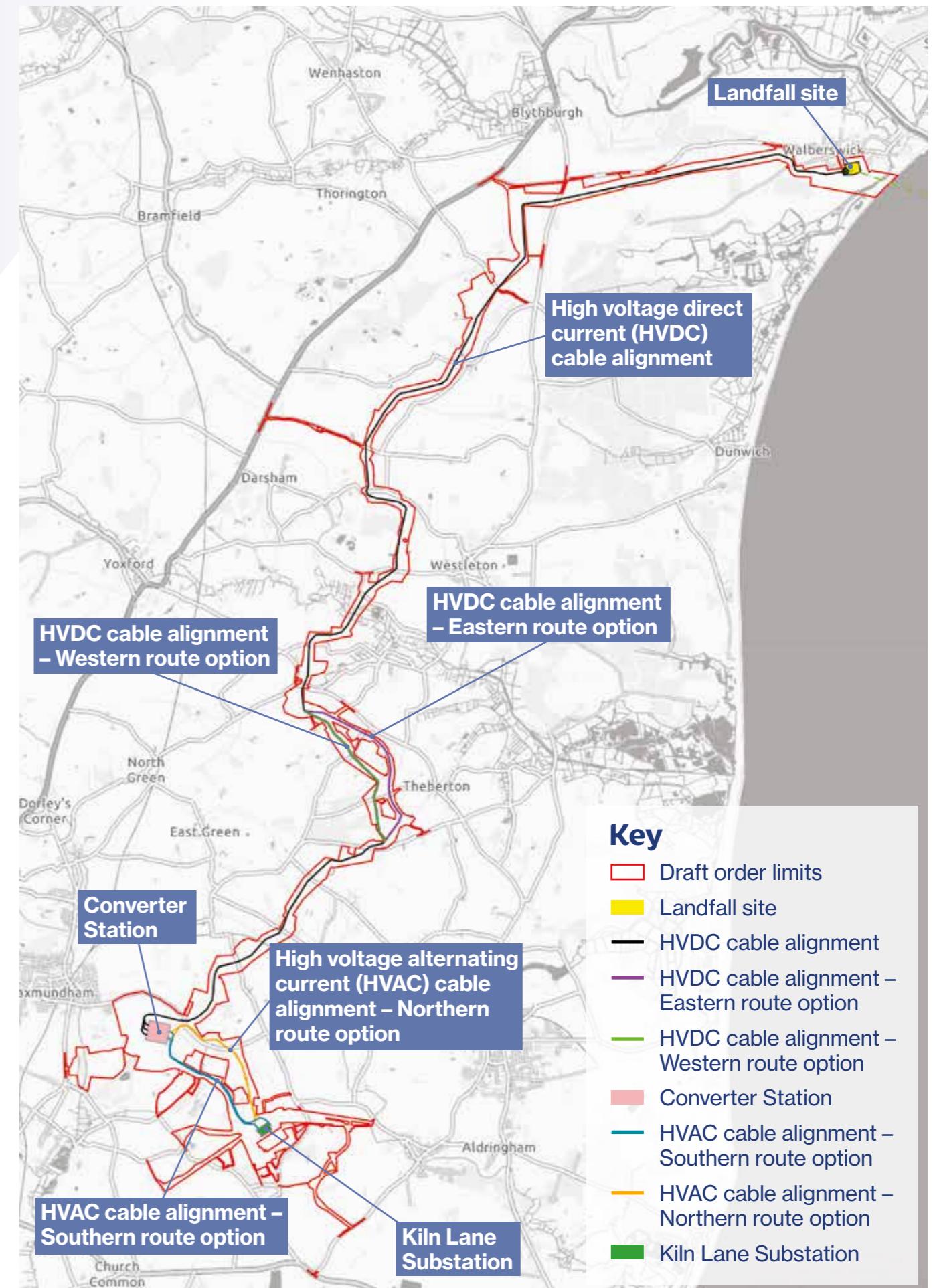
Our proposals

We are conducting our statutory consultation on our updated proposals for LionLink, having refined the early stage proposals we presented during our non-statutory consultations in 2022 and 2023. NGLL is seeking consent for all elements of the project up to the EEZ, with TenneT seeking consent for the Dutch elements of the project.

Onshore

LionLink comprises both offshore and onshore infrastructure – we are consulting on all elements of the project. The proposed onshore infrastructure would include:

- Kiln Lane Substation;
- Underground HVAC cables between Kiln Lane Substation and the proposed converter station;
- Converter station east of Saxmundham;
- Underground HVDC cables between the proposed converter station east of Saxmundham and a proposed landfall site at Walberswick; and
- Landfall site at Walberswick.


What are Draft Order Limits?

The boundary subject to a DCO application within which a project could take place. The boundary includes land required for the construction, operation, maintenance, and decommissioning of a project.

Viking Link converter station, delivered by NGV

Overview of our onshore proposals

Landfall site

The proposed landfall site at Walberswick is where the proposed offshore HVDC cables connect to the proposed underground HVDC cables. This includes the Transition Joint Bay (TJB), compounds for trenchless crossing works and supporting compounds and mitigation.

TJBs are used to connect an onshore cable to an offshore cable. During construction, TJB's are generally around 50 metres in length, 5 metres in width (dependent on design requirements) and are located near the landfall site.

There would be a construction area at the landfall site. After we have finished construction, we would leave no visible infrastructure.

Question 3 in our consultation feedback form, available at consultation events or on our website, provides the opportunity for you to share your feedback on our proposed landfall site at Walberswick.

What is a trenchless crossing?

A trenchless crossing is a method by which ducts and cables are installed below ground level, specifically designed to avoid conflict with surface features.

An example of a trenchless crossing technique is Horizontal Directional Drilling (HDD), which is used to minimise surface disruption and environmental impact, particularly in sensitive areas or where obstacles like watercourses and roads are present.

For example, HDD would be used at the proposed landfall site, which would involve drilling a guided underground path and then pulling the cable through the borehole. This would allow for installation beneath sensitive areas, such as Walberswick beach, without the need for more disruptive surface works.

Underground HVDC cables

The proposed underground HVDC cables are transmission cables that would connect the proposed landfall at Walberswick to the proposed converter station, east of Saxmundham. The proposed underground HVDC cables would be approximately 20 km in length. There would be one trench dug for the proposed HVDC Cables, which would typically be up to 2.45 m x 1.5 m in width and depth.

As part of this consultation, we are seeking feedback on our plans across the route. This includes instances where we are presenting options.

Along the HVDC route, from Saxmundham Road (B1119) to Middleton Moor, the following options are presented:

- **Western route option** - where LionLink cabling would be installed within its own route corridor
- **Eastern route option** - which would enable co-location within the Sizewell Link Road

The Sizewell Link Road is a new road (approved as part of the Sizewell C project) which would connect the A12 near Yoxford with the B1122, bypassing the villages of Yoxford, Middleton Moor and Theberton.

More information on our proposed underground HVDC cable corridor can be found in our Options Siting and Routeing Report. This report has been published as part of this consultation; which can be found in the library on our dedicated project website.

Question 4 in our consultation feedback form provides the opportunity for you to share your feedback on the proposed underground HVDC cable corridor. This includes the opportunity to share any thoughts you may have specifically on the Western route and Eastern route options.

Before

During

After

Computer generated examples, using our past interconnector works showing the 'before, during and after' phases of our onshore cable laying and ground restoration.

Converter station

The proposed converter station would convert electricity from direct current (DC) to alternating current (AC). DC is used to transmit more efficiently across long distances, whereas AC is more typically used in our day-to-day lives. This enables the electricity that has been transported from the Netherlands via HVDC cables to be supplied to homes and businesses.

The proposed converter station would also change electricity from HVAC to HVDC so that surplus electricity can be sold to the Netherlands.

The proposed converter station would be connected into by both underground HVAC cables and HVDC cables. The HVAC cables would route to Kiln Lane substation and the HVDC cables will route to the proposed landfall site at Walberswick.

The proposed converter station site is located east of Saxmundham and south of the B1119 Saxmundham Road, which is adjacent to the site that Sea Link has identified for their proposed converter station.

Given the proposed co-location of our infrastructure with Sea Link, we are continuing to explore further coordination opportunities for our on-site activities. Sea Link's converter station would be consented separately and does not form part of our application for development consent.

The proposed converter station would house several buildings up to 26 metres high and would have a footprint of up to 8.1 hectares.

If consented, Sea Link will be developing a new permanent access road from the B11121 to the west of the proposed converter station. This would facilitate a permanent shared access between Sea Link and LionLink. We are including this access road in our proposals in the event that Sea Link does not proceed with this development.

Question 5 in our consultation feedback form provides the opportunity for you to share your feedback on the proposed converter station.

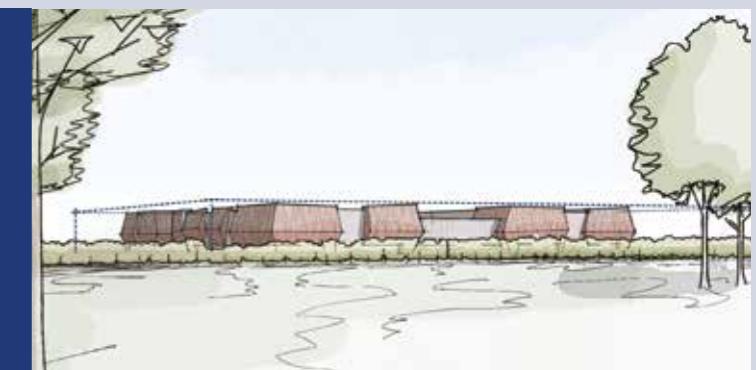
Converter station built for NGV's North Sea Link

Converter station design

The design of the converter station would respond sensitively to the surrounding landscape character and heritage context, with buildings sited and scaled to integrate effectively into their environment. The converter station will be positioned as low as reasonably possible within the landscape to improve visual screening.

As part of this consultation, we are seeking feedback on the design of our converter station. Four broad themes are outlined below. Based on the feedback we receive and further technical work, the final design may be a blend of some these themes.

Agricultural – Uses simple, conventional building forms similar to modern farm and industrial structures in the area, with a standard colour palette (e.g. khaki greens) aligned with National Landscapes guidance. Subject to feedback, enhancements like feature gables and cladding could be included.


Enhanced façade – Explores how decorative exterior walls could be used to enhance the design, by incorporating references to local artists. It would utilise metal cladding inspired by the texture and shading of flint, and will explore a potential gradient from dark (base) to light (top), focusing on blue tones. Based on feedback, this design could be applied to key public-facing areas of the station.

Curved roof – A rolling roof with deep overhangs could help the station blend into the landscape and reduce its perceived height.

Fragmented forms – Aims to break down the building's scale into familiar proportions, inspired by Snape Maltings, as a local example of a large complex of cojoined structures.

Underground HVAC cable corridor

From the proposed converter station, two route options for the proposed underground HVAC cable corridor to connect to Kiln Lane Substation remain at this stage:

■ **Southern route option** - this option facilitates co-location with the proposed Sea Link HVAC and HVDC cable corridors. The route heads northwest from the Kiln Lane Substation, crossing agricultural fields before entering the proposed converter station from the southeast.

This option would allow for the cables to be laid along a similar route to those being delivered by the Sea Link project, although it would require further review and coordination.

Questions 7 & 8 in our consultation feedback form provide the opportunity for you to share your feedback on the proposed Underground HVAC cable corridor. This includes the opportunity to share any thoughts you may have specifically on the Southern Route and Northern Route options.

Kiln Lane Substation

Substations are where energy projects connect to the UK's electricity grid. They provide the junctions where high voltage circuits connect to one another, creating the network through which electricity flows into, across and out of the grid. LionLink proposes to connect at Kiln Lane Substation, situated north of Friston.

Kiln Lane Substation already has development consent as part of SPR's East Anglia ONE North (EA1N) and East Anglia TWO (EA2) offshore wind projects. We anticipate that construction of the substation would complete by 2028.

NGET has also submitted proposals for Kiln Lane Substation as part of its DCO application for the Sea Link project.

We have considered two possible scenarios for enabling LionLink's connection to the Kiln Lane Substation:

■ **Amendments to Kiln Lane Substation** - SPR's plans for the Kiln Lane Substation do not include sufficient connection capacity for LionLink. To facilitate our connection, we are proposing an extension to the Kiln Lane Substation.

■ **Deliver Kiln Lane Substation** - to account for the unlikely scenario that LionLink comes forward before EA1N or EA2, our application would include the option to deliver the substation instead. This is to ensure that LionLink can progress in this scenario.

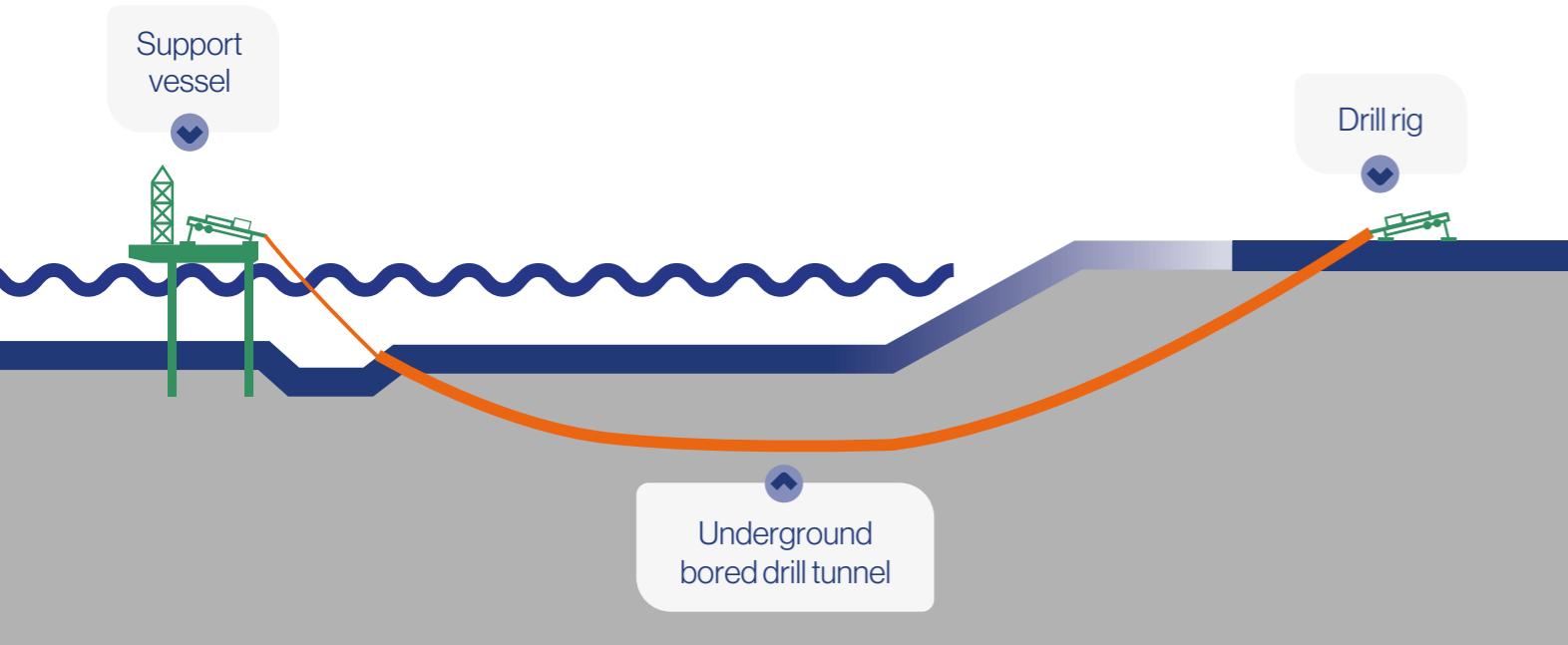
For more information about Kiln Lane Substation, including its key characteristics and design parameters, please read Chapter 2 of our PEIR which can be found in our library at nationalgrid.com/national-grid-ventures/lionlink/library

Question 9 in our consultation feedback form provides the opportunity for you to share your feedback on Kiln Lane Substation.

Onshore construction

We are continuing to develop and refine our approach to the construction of the onshore proposals. Following the decision to approve development consent for the project, enabling works would be expected to begin in 2028, and construction would be expected to complete in 2032. The anticipated duration of the construction is therefore up to 5 years.

Question 11 in our consultation feedback form provides the opportunity for you to share your feedback on our approach to the construction of LionLink.



Landfall site

Construction at the proposed landfall site at Walberswick is anticipated to last around 20 months. This would include site set up, enabling works, and demobilisation. During construction, we expect the machinery used on site to include the HDD rig and excavators, brought to site via HGVs. In addition to this, temporary welfare cabins would be installed on site.

Our construction vehicles would access the site via a temporary haul road using a new entrance from the B1387, reducing traffic entering Walberswick town.

The construction area would be approximately 3.3 ha – this is smaller than the landfall area shown on our maps. The precise location would be informed by on-site preparation works if consent is granted.

Construction approach

At the proposed landfall site, trenchless construction methods such as Horizontal Directional Drilling (HDD) would be used to minimise impacts on environmentally sensitive areas. The length of the HDD would be up to 1.6 km. Our aim is to keep the duration of work as short as is practicable to reduce the duration and complexity of works within this sensitive coastal setting.

The HDD would start onshore and emerge from the seabed in a water depth of between 5 m and 9 m. The drilling would take place at a suitable depth below ground level to avoid interaction with the shoreline, environmentally sensitive features and to avoid impacts on coastal erosion.

The design and delivery of the proposed landfall infrastructure has considered the long-term resilience of the coastline. Our aim would be to make sure all assets are safeguarded against coastal erosion over their operational lifespan, and that our construction activities do not exacerbate erosion risk.

Where earthworks are required to provide a safe and level working area, we would make efforts to reduce the off-site movement of materials and minimise environmental disturbance.

Some activities at the landfall site would require 24-hour working. These include drilling, reaming, duct pulling and cable pulling. The landfall site would require up to four HDDs and each is expected to take up to 6 weeks to complete, subject to site conditions. In most cases, continuous 24-hour construction activities at the landfall site are expected to be limited to a maximum of 10 consecutive days per HDD.

When construction is complete the only above ground structures would be small cable marker posts in the vicinity of the TJB. Further work has identified that permanent kiosks at the landfall site will now not be required.

Underground HVDC cable corridor

Construction of the proposed underground HVDC cable corridor infrastructure is expected to take approximately 2 years and 3 months. To keep the cable installation at a high quality we would typically progress about 1.5 km per section through a phased approach. Along the proposed underground HVDC cable corridor, topsoil would be stripped, stored, and reinstated within the construction corridor to support successful land restoration. This avoids long-term disruption in any one location.

Cable joint bays would be required along the HVDC cable route. These features would all be below ground.

The typical working width for the proposed HVDC cable corridor would be up to 46 m. This would include the space required for the haul route, soil storage and temporary drainage during installation.

Construction approach

The proposed underground HVDC cable corridor has been designed to avoid watercourses and floodplains where feasible. Where crossings are required, trenchless installation methods would be prioritised to protect sensitive aquatic environments. To maintain the integrity of existing infrastructure, the cable alignment would be developed to minimise the need to divert or protect other assets that are above or below ground.

Careful consideration has been given to minimise the number of bends along the cable alignment to reduce cable stress during installation.

Construction access and routes would utilise existing roads and infrastructure where possible to reduce the extent of temporary works.

Cable installation being undertaken on Viking Link

Converter station

Construction of the proposed converter station to the east of Saxmundham is expected to take up to 5 years.

Site preparation would be required before construction of the converter station and underground cable corridors begins. This includes vegetation clearance, ground investigations, archaeological surveys, and drainage works to ensure the land remains stable and protected from flooding throughout construction and into operation. Diversions of existing third-party assets, such as utilities and drainage systems, may also be necessary.

During construction, vegetation clearance and drainage works would be carefully managed so the site remains stable and resilient to flood risk, with preparatory works designed to preserve surface water patterns and support biodiversity. The site layout would align the HVAC and HVDC cabling infrastructure in the best way to prioritise efficient electricity flow.

Noise levels associated with the construction of the proposed converter station, including haul road use by vehicles, construction vehicle movements, enabling works and compound operations, are predicted to remain below thresholds that would indicate a significant noise related impact.

Mitigations

To reduce disturbance, noisy plant and equipment for the converter station would be sited away from sensitive areas, and where necessary, noise mitigation such as acoustic covers and insulated wall panels would be used. Temporary lighting would be required at the site for construction during shorter days. No 24 hour lighting is expected to be required.

Delivery of transformer unit to the Viking Link project

Underground HVAC cable corridor

Construction of the proposed underground HVAC cable corridor is expected to take up to 3 years and would be delivered in sections.

The typical working width for the proposed HVAC cable corridor trenches within the northern route option would be up to 63 m. The typical working width for the southern route would be up to 94 m to accommodate Sea Link's HVAC and HVDC cables. Cable joint bays and link boxes would be required along the HVAC cable route.

Mitigations

As with the proposed underground HVDC cable corridor, the alignment of the proposed underground HVAC cable corridor would avoid environmentally sensitive features where possible, such as watercourses and designated habitats. Trenchless methods would be used where appropriate. Where cable joint bays are required, these would be kept below ground where feasible, with above-ground infrastructure limited to link boxes.

Similarly, the alignment would be designed to avoid excessive bends, protecting the integrity of the cables during installation. All efforts would be made to reduce the number of required joint bays, improving reliability and reducing the footprint. Construction activity for the proposed underground HVAC cable corridor would involve using existing access routes, and a haul road would be created to support installation. Topsoil management practices would be implemented to support rapid land restoration following construction.

Kiln Lane Substation

The construction period for the proposed extension to Kiln Lane Substation would take approximately 18 months.

In the unlikely scenario Kiln Lane Substation is not delivered by Scottish Power Renewables for EA1N or EA2, or by NGET for the Sea Link project, Kiln Lane substation would be delivered in its entirety as part of our application for LionLink. In this scenario, we would use temporary towers and/or masts to help reconfigure the overhead line (OHL) connections at Kiln Lane Substation. No OHL works are required for any other part of the onshore components of LionLink, with this work limited to the vicinity of Kiln Lane Substation.

If necessary, full construction of the substation would take approximately 3 years. We are currently in discussions with NGET to explore how additional bays could be delivered during the main build, helping to avoid additional construction disruption.

Construction approach

Equipment associated with the Kiln Lane Substation would be positioned to avoid directing noise toward sensitive receptors, and mitigation measures such as noise barriers and low-noise plant would be employed as necessary.

Construction activity would also be managed to reduce short-term disruption where possible, with noise management plans and community liaison forming part of the delivery approach.

What is a link box?

A link box is a small piece of electrical infrastructure used at joint bay locations along an underground cable route, allowing for testing and maintenance of the cable system. Dependent on ground conditions, we would need either an above ground link pillar or an in-ground link box at each joint bay position.

What is a cable joint bay?

Cable joint bays allow for individual sections of cable to be joined together. They are positioned at regular intervals and would be installed below ground so that they are not visible after construction.

Temporary infrastructure

The construction phase would involve a range of temporary construction activities including working areas for construction equipment and machinery, site offices, storage, bellmouths, access roads and haul roads. We would also need to create crossing points across local watercourses and divert public rights of way.

Haul roads

We are proposing temporary haul roads which would be constructed where appropriate to move materials and workers efficiently, reduce traffic on local roads, and improve safety. This would keep more construction vehicles within the construction site, and off the local road network.

Example of haul road construction

Temporary construction haul roads would be built towards the start of construction and may be made of stone, temporary track way or soil stabilisation, as appropriate for the type of vehicle and ground conditions. Haul roads would be removed when construction of the project is complete, with the land reinstated to its original condition.

Example of removed haul road with land reinstated

Onshore operation

Construction compounds

During construction, core on-site working hours would be 7am-7pm, Monday – Friday and 7am-5pm on weekends and Bank Holidays. However, this does not mean that work will take place continuously during these hours throughout the entire construction period. These hours represent the maximum window within which we may work, depending on the activity and stage of the project. Certain tasks, such as those at the proposed landfall site, would require extended hours, but we will keep communities informed ahead of any changes.

We are continuing to engage with third parties and Local Planning Authorities to reduce working hours where possible.

Viking Link construction compound during works

The workforce required to deliver the construction of LionLink would vary throughout the programme and would depend, in part, on whether Kiln Lane Substation is constructed in advance.

In the scenario where LionLink is responsible to connect the existing Kiln Lane Substation, we expect a maximum of 500 people to be working at any one time on LionLink. We would expect a maximum of 669 people should the project also be responsible for the construction of the substation. We would look to employ local people where possible.

Additionally, we are continuing to liaise with local enterprise groups to best ensure that benefits are shared as best as possible within the community as the project progresses.

The same land following ground restoration works

Onshore cabling

Once completed and operational, all underground cable infrastructure would remain buried, with only link pillars visible above ground along the proposed underground HVAC cable corridor. Once the proposed converter station and cable systems are operational, there would be limited traffic movements off the B1121 near Benhall Green, primarily for maintenance purposes. We would manage these traffic movements to minimise disruption to local communities.

Converter station

The proposed converter station, once operational, would operate with minimal staffing—up to 12 people in total. During annual maintenance, the site will accommodate approximately fifty staff over a two week period. This activity will require limited traffic movements, including around four HGV deliveries to support the maintenance operations. The environmental impacts associated with the proposed converter station and our proposed mitigations are outlined in the PEIR.

Staff onsite in the Viking Link converter station valve hall

Kiln Lane Substation

The proposed Kiln Lane Substation will be operated in line with NGET processes and procedures.

NGET will be responsible for managing all grid infrastructure except for the parts owned by NGV for LionLink, which we will manage. It is anticipated that the substation would not be staffed continuously, with minor maintenance taking place twice a year for two days each time, and major maintenance every two years for four days.

Environment

We would look to reduce and avoid impacting the local environment as far as possible, so our proposals also include opportunities for environmental mitigation, compensation and enhancement. One area of opportunity is biodiversity, whereby we are committed to delivering a minimum of 10% improvement in biodiversity as in accordance with the relevant legislation.

Our plans for biodiversity net gain would be set out in the Outline Landscape and Ecological Management Plan (OLEMP) which would be legally secured under a requirement of the DCO, if granted. The OLEMP will be available within our Environmental Statement which will be submitted with our application for development consent.

Our offshore proposals

LionLink would include an offshore HVDC cable corridor extending for approximately 182 km from the landfall site at Walberswick across the North Sea to the boundary between the UK and Netherlands EEZ and continuing toward the Dutch offshore converter station and wind farm.

A proposed marine aggregate extraction area was announced by The Crown Estate in late 2024. The proposed area overlaps with the LionLink corridor.

To avoid interactions with the proposed aggregate extraction site, we amended our offshore HVDC cable corridor to include both the original alignment (which passed through the proposed extraction area) and an alternative corridor. The alternative corridor option avoids the boundary of the proposed extraction area by 500 m (an industry standard distance).

We assessed both offshore HVDC cable corridors as part of the PEIR. Only one final route will be included in the Environmental Statement.

The offshore cable and associated infrastructure would be installed along our proposed offshore HVDC cable corridor. This has been developed through consultation with marine stakeholders as well as technical and ecological surveys.

Potential impacts on seabed conditions and habitats include disturbance to habitats near the seabed, temporary disturbances to seabirds during construction, interactions with commercial fisheries, and temporary disruption to marine navigation. Mitigation measures such as route adjustments, timing of works, and stakeholder coordination are being developed to control these risks.

We are keen to hear your views on all aspects of the offshore proposals. These include our proposed cable installation methods, how trenchless techniques and other construction approaches could be used to minimise impacts on sensitive coastal and marine habitats. Feedback will help us shape how we coordinate with fisheries, shipping and conservation groups to manage offshore construction in a way that is safe, sustainable, and respectful of other marine users.

Question 10 in our consultation feedback form provides the opportunity for you to share your feedback on the proposed offshore HVDC cable corridor.

Overview of our offshore proposals

Key

- Marine Draft Order Limits (Red line)
- Exclusive Economic Zone boundary (Dashed purple line)

Offshore construction

Before installing any cables, we would undertake surveys to refine the route. These surveys aim to identify and confirm the location of anything that could impact our ability to lay the cables, such as boulders or potential unexploded ordnance. Following these surveys, the installation route would then be cleared, removing any obstructions ahead of cable laying works.

There are three methods that can be used to install a marine cable. All methods use a specialist cable installation vessel.

■ **Post-lay burial** – a vessel would lay the cables on the seabed and a further vessel would follow later to bury the cables into the seabed. In some areas where the seabed is unsuitable for burial the cable may be protected by rock placement.

We are coordinating closely with the Marine Management Organisation (MMO), conservation bodies, and fisheries groups to ensure offshore works are conducted responsibly. Construction would be planned to avoid sensitive areas and avoid conflicts with other marine users.

More information about the offshore cable installation process for LionLink can be found in our PEIR.

■ **Pre-cut trenching** – a plough or jetting machinery would create a trench along the seabed, and the cables would be laid directly into the trench. It would be followed by a support vessel which would cover or bury the cables.

■ **Simultaneous lay and burial** – this technique would create a trench and lay the cable into the trench at the same time. The cable laying vessel may also tow the burial equipment or it could be deployed by another vessel following close behind.

Work on site

During construction, vessels would work 24 hours a day to minimise the time spent installing the cable and reduce the impacts on other marine users and the environment.

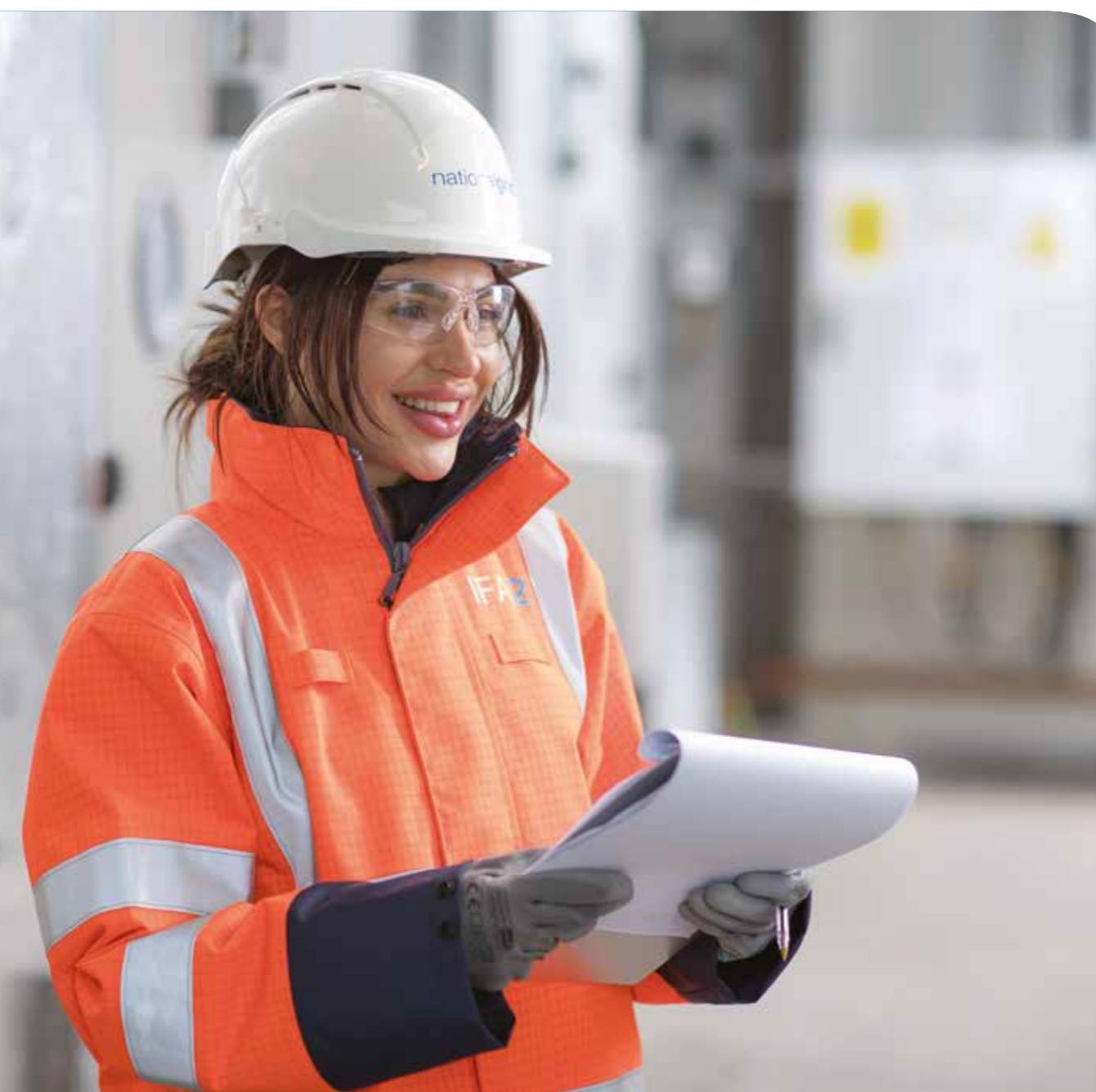
Vessel laying cabling on the Viking Link project

Marine environment

Offshore cabling would be buried to depths determined by the Cable Burial Risk Assessment (CBRA). The aim would be to provide adequate protection from external threats, such as fishing activity or vessel anchoring. Where burial is not feasible, the cables would be protected using measures such as concrete or rock.

In areas where cable crossings with existing subsea infrastructure (e.g., pipelines or telecommunications cables) are unavoidable, the alignment would be planned to cross at angles, which would provide safe installation with minimal disturbance.

To protect the marine environment, the route and method of installation would avoid or minimise the extent of any interaction with sensitive habitats. The integrity of marine designated sites, such as Special Areas of Conservation (SACs) and Special Protection Areas (SPAs), would also be safeguarded as part of our mitigation efforts.


Offshore operation

When operational we may need to undertake:

- Inspection surveys
- Cable repair
- Reburial, remedial protection, or maintenance and reinstatement of external cable protection features.

We would continue to liaise with marine stakeholders throughout operation.

We would also coordinate with our Dutch partners, TenneT, across UK and Netherlands jurisdictions on the effective management of cross-border environmental impacts.

Environmental approach

We have developed design principles in accordance with relevant policy and guidance and seek to protect and enhance the environment and respond to sustainability objectives and stakeholder feedback.

A minimum of 10% biodiversity net gain (BNG) would be delivered if LionLink is consented, in accordance with the relevant legislation. Habitat creation and enhancement would be designed not only to support site-specific biodiversity improvements, but also to contribute to wider environmental objectives, such as enhancing ecological networks and supporting natural ecosystems.

We are also considering additional tree planting around the converter station to mitigate visual impacts. These measures would align with local and national biodiversity priorities, and we would discuss our approach with relevant stakeholders. In sensitive areas, we will consider landscape buffering in the form of native woodland planting, reinforcement of existing hedgerows, and soft landscaping to integrate infrastructure within the existing surroundings.

Avoidance of sensitive ecological features is another objective as we bring forward our proposals for LionLink. We have sought to best avoid irreplaceable habitats, including ancient woodland and veteran trees.

We would also look to prevent adverse effects on internationally and nationally designated sites, such as SACs, SPAs, Ramsar sites, and SSSIs. We would use opportunities to enhance conditions for these species of principle importance through targeted habitat creation or improvement.

To reduce potential environmental impacts during construction, we would apply a range of measures to limit effects on transport, public access and local communities. Public Rights of Way (PRoW) and road links would be maintained where possible, and where diversions are required, these would be delivered to an equivalent or enhanced standard and integrated within the surrounding landscape.

For more information on our proposed environmental mitigations the PEIR is available in the library on our project website.

Questions 12 & 13 in our consultation feedback form provides the opportunity for you to share your feedback on our approach to assessing environmental impacts linked to the construction and operation of LionLink.

Coordination with other projects in the area

In 2025, NGET submitted its application for a Development Consent Order for the Sea Link project which is proposed to connect to a converter station in Saxmundham via a landfall site in Aldeburgh, to Kiln Lane Substation.

Additionally, other major energy infrastructure developments being brought forward in the area include:

- Sizewell C nuclear power station (EDF Energy)
- EA1N and EA2 windfarms (SPR)
- Helios Energy Park (BNRG Renewables).

As LionLink develops, we are working closely with these developers, to minimise environmental and community impacts by aligning construction activities and mitigation measures where possible.

NGV and NGET are also collaborating on co-locating infrastructure for LionLink and Sea Link, identifying a shared converter station site (east of Saxmundham), access road, and a potential shared proposed onshore HVAC cable corridor.

Question 14 in our consultation feedback form provides the opportunity for you to share your feedback on LionLink's approach to coordination with other projects.

Cumulative impacts with other regional projects will be considered within our Environmental Statement, and we remain committed to coordinating activities with other developers to minimise impacts on local communities and the environment.

You can find information about how we are coordinating with other projects within Chapter 28 of the PEIR. This will then inform our Environmental Statement, which we will submit alongside our application for development consent in 2026.

LionLink and Sea Link

While NGET and NGV are legally and operationally distinct, each operating within its own regulatory framework as part of National Grid Group, the two businesses continue to work closely together to deliver coordinated outcomes.

LionLink and Sea Link are being designed and delivered in a way to minimise local impact. We previously held parallel consultations to make engagement clearer for communities, and through ongoing collaboration, we are continuing to explore opportunities for a shared converter station site.

Converter station locations

Key

- LionLink's proposed converter station
- Sea Link's proposed converter station

Community benefit

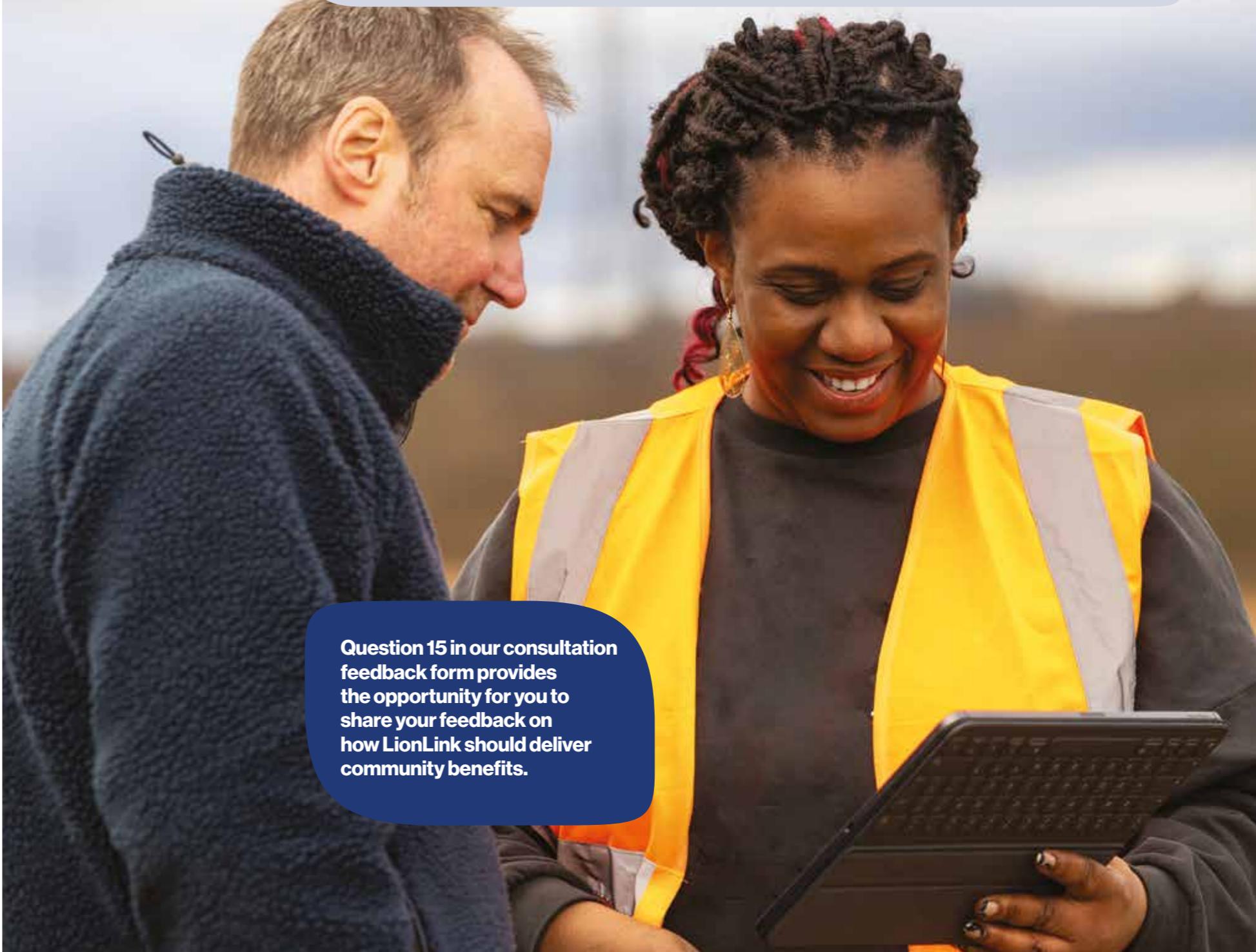
NGV aims to work closely with local communities at the earliest opportunity and to always act as a good neighbour. As a business, we already have several programmes that aim to connect with local schools and colleges to inspire the engineers of the future.

We recognise the importance of providing proportionate benefits to communities impacted by our work. We believe that communities living closest to LionLink should benefit from it and are best placed to recommend what 'community benefit' should be.

Local initiatives

Since developing LionLink in Suffolk, we have been engaging with communities and organising positive initiatives. We have launched a local social mobility fund, in partnership with Catch 22, which supports driving lessons for people facing barriers to employment. LionLink has committed to support and tackle this issue and other associated barriers through this fund, which would alleviate common barriers to social mobility.

We have also committed to supporting a local alternative provision education provider by helping to renovate a school building, ensuring that students with complex needs can benefit from enhanced and more suitable facilities.


In November 2024 we worked with National Energy Action to supply 200 winter warmth packs to those most vulnerable in Suffolk. As well as this, as part of British Science Week in March 2025, we provided interactive STEM sessions to more than 600 children in local schools, including in Saxmundham.

We remain committed to being a good neighbour and positively contributing to local communities. We look forward to receiving suggestions of further initiatives to participate in as part of this consultation.

Funding

Communities should benefit from hosting new electricity transmission infrastructure. To help us deliver community benefit schemes that work for your area, we are keen to hear your views. We want to understand what is important to you, and where community benefit funds could deliver long-lasting benefits, including through community grant schemes and investment in community groups or via regional partnerships.

The way we deliver community benefit funding is informed by the Government's Community Benefit Framework published in March 2025. This sets out the types of infrastructure projects that should deliver community benefit funds, and the level of funding that should be made available. In line with the Government's Framework, we are proposing a community benefit package that reflects the recommended £530,000 to be granted per proposed converter station. This funding would be provided by NGV and made available when construction of LionLink begins, should it receive approval.

Question 15 in our consultation feedback form provides the opportunity for you to share your feedback on how LionLink should deliver community benefits.

Find out more

Our statutory consultation will run for a period of 8 weeks between Tuesday 13 January and Tuesday 10 March 2026.

The consultation presents and seeks feedback on the following proposals and considerations. We look forward to receiving your comments, which will help inform our final submitted plans:

- Underground HVAC cable route between the proposed Kiln Lane Substation (formerly known as Friston Substation) and the proposed converter station
- Location and design of the proposed converter station, east of Saxmundham
- Underground HVDC cable route between the proposed converter station and landfall
- Siting of the landfall, at Walberswick
- Offshore HVDC cables from the proposed landfall site to the limit of the UK EEZ
- Construction areas
- Coordination with other major energy projects
- Preliminary environmental assessment and proposed mitigation measures in the PEIR
- Community benefits

Consultation documents

- Project overview document
- Project overview document – quick read
- Consultation leaflet
- Consultation banners
- Feedback form
- Interim non-statutory consultation feedback summary report
- Supplementary non-statutory consultation summary report
- Statement of community consultation
- Converter station design background document
- Preliminary environmental information report (PEIR)
- PEIR non-technical summary
- Options siting and routeing report
- Design principles document
- Plans and drawings
- Guide to using the consultation plans and drawings

Public information exhibitions

Throughout the consultation we will be holding a series of face-to-face events across the local area. Information about our proposals will be on display and copies of maps and technical documents will be available to view. Members of the project team will also be available to talk through our proposals and answer any questions you may have.

Date	Time	Location
Saturday 24 January 2026	11am–4 pm	Fromus Centre, Street Farm Road, Saxmundham, IP17 1AL
Saturday 31 January 2026	11am–4 pm	Walberswick Village Hall, The Street, Southwold, IP18 6TZ
Friday 06 February 2026	2–7 pm	High Lodge Leisure, Haw Wood, Hinton, Nr Darsham, IP17 3QT
Saturday 21 February 2026	11am–4 pm	Westleton Village Hall, The Street, Westleton, Saxmundham, IP17 3AD
Saturday 28 February 2026	11am–4 pm	Yoxford Village Hall, Old High Road, Yoxford, IP17 3HN

Join our webinars

The project team will be presenting our proposals and taking your questions during the consultation period through two live online webinars, **which you can register to attend via our website**. The webinars will include a British Sign Language interpreter.

Date	Time
Wednesday 04 February 2026	6–7:30 pm
Tuesday 03 March 2026	6–7:30pm

Deposit locations

Paper copies of this document will be available to inspect at the locations listed below throughout the consultation period. The following documents will be made available:

- Project overview document
- Project overview document – quick read
- Consultation leaflet
- Feedback form and freepost envelopes
- Statement of community consultation*
- PEIR non technical summary*
- Options siting and routeing report*
- Plans and drawings*
- Guide to using the consultation plans and drawings*

*Reference copy only – these will not be available to be taken away.

All documents will also be available to view and download from our website, including the full PEIR.

Location	Address	Opening hours
Saxmundham Library	Block B, Street Farm Road, Saxmundham, IP17 1AL	Monday: Closed Tuesday: 9.30 am – 5.30 pm Wednesday: 9.30 am – 5.30 pm Thursday: Closed Friday: 9.30 am – 5.30 pm Saturday: 10 am – 1pm Sunday: 10 am – 3 pm
Saxmundham Town Council	The Town House, Station Approach, Saxmundham, IP17 1BW	Monday: 9 am – 4 pm Tuesday: 9 am – 4 pm Wednesday: 9 am – 4 pm Thursday: 9 am – 4 pm Friday: 9 am – 4 pm Saturday: Closed Sunday: Closed
Southwold Library	Old Hospital Hub, Field Stile Road, Southwold, IP18 6LD	Monday: Closed Tuesday: 10 am – 1pm, 2 – 6 pm Wednesday: 10 am – 1pm, 2 – 6 pm Thursday: 10 am – 1pm, 2 – 6 pm Friday: 10 am – 1pm, 2 – 6 pm Saturday: 9:30 am – 1pm, 2 – 5 pm Sunday: 11 am – 4 pm
Halesworth Library	Bridge Street, Halesworth, IP19 8AD	Monday: 9 am – 1pm Tuesday: 9 am – 5 pm Wednesday: 9 am – 5 pm Thursday: Closed Friday: 9 am – 5 pm Saturday: 9 am – 5 pm Sunday: 10 am – 3 pm
Leiston Library	Main Street, Leiston, IP16 4ER	Monday: Closed Tuesday: 9:30 am – 7:30 pm Wednesday: Closed Thursday: 9:30 am – 5:30 pm Friday: 9:30 am – 1pm, 2 – 5 pm Saturday: 9:30 am – 1pm, 2 – 5 pm Sunday: 10 am – 3 pm

Have your say

Our statutory public consultation runs from Tuesday 13 January 2026 to Tuesday 10 March 2026. During this time, we welcome and will consider feedback on all aspects of our proposals for LionLink.

How to give feedback

Please submit your feedback by the close of our consultation period. All feedback we receive as part of this consultation will be carefully considered as we finalise our proposals and prepare our application for development consent.

All responses to the consultation must be received before 11.59pm on the closing date. Postal responses will be accepted until 16 March 2026 to allow time for delivery.

Online feedback form:

Complete an online feedback form by visiting nationalgrid.com/lionlink

Paper feedback form:

Send your completed feedback form to **Freepost NGV LIONLINK**

Email us:

If you prefer to send us your comments via email, you can send them to us at info@lionlink.nationalgrid.com

Information for landowners

Working effectively with all owners and occupiers of land potentially affected by our proposals is one of our highest priorities. We already have well established working relationships with many such parties, based on transparency and respect, and this process will continue as we develop more information on the land that may be affected.

In the DCO planning process, anyone with a legal interest in land is known as a Person with an interest in Land (PIL). If you have been identified as a PIL, we will have formally notified you of this as part of our consultation.

LionLink has made a commitment to avoid routeing any cables through residential properties. Where routeing is required through privately owned land, a voluntary agreement would be sought by LionLink.

However, the project's application for development consent will seek to include provision for compulsory acquisition powers to acquire land and rights over land or to temporarily occupy land where no voluntary agreement has been reached.

Survey works

We have already undertaken a number of surveys across the area to support our environmental and technical assessments for the development of LionLink. These initial surveys have helped inform our understanding of potential landfall site locations, underground cable routes, and converter station sites.

We are seeking to conduct further surveys on land to help inform environmental and technical aspects, covering landscape, ecology, cultural heritage, drainage and soil types. We may look to undertake two types of surveys: a non-intrusive survey, where a surveyor would walk over the land and visually collect data, or an intrusive survey, requiring below surface investigation of the ground, including but not limited to boreholes or trial trenches.

Whilst voluntary agreements for conducting surveys are our preferred option, NGV has statutory rights to gain access to land for surveys and investigation works. Where an agreement for accessing land for survey requirements cannot be reached voluntarily, NGV would use its powers under Section 172 of the Housing and Planning Act 2016. This authorises NGV, as an acquiring authority, to access land where there is a proposal to acquire an interest in land or a right over land. A statutory notice would be served on the relevant person, giving at least 14 days' notice before access is taken.

We have engaged with landowners throughout our consenting process and will continue to do so. We are working with a land agency, Fisher German, who have been engaging with landowners and occupiers regarding our potential land requirements for the project and our access requirements for non-intrusive and intrusive surveys in advance and in support of our application for development consent. Impacted landowners will have been contacted with details on how to engage with the team and provide feedback on the proposals.

More detailed information for landowners, along with contact information for landowners to engage with the project, can be found on the Landowner page of our project website.

Compensation for landowners

Our land agents, Fisher German, will manage compensation with landowners and their representatives. Where land is acquired under voluntary agreements, compensation will be guided by the National Grid Group Land Rights Strategy and Payment Schedule.

Where land may be acquired under the compulsory acquisition powers that are included within a DCO, or if there is a decrease in value of land or property due to construction or operational impacts, LionLink will assess compensation payable to landowners/homeowners in line with the compensation code, which is the framework that sets out compensation payable to PILs and is governed by several Acts of Parliament and case law.

NGV would aim to mitigate impacts to landowners during construction and operation of the project. Details of this will be set out in our application for development consent.

Seeking advice as a landowner

You are entitled to appoint a suitably qualified representative to act on your behalf where we are seeking rights to carry out works on your property. Agents providing advice in relation to compulsory purchase matters should ensure they comply with the RICS Professional Standard. Surveyors advising in respect of compulsory purchase and statutory compensation can advise you on the process, your rights and handle any compensation claims on your behalf.

We will reimburse you for professional fees reasonably incurred in respect of all claims and advice in connection with our proposals. You can find more information about this within our Land Rights Strategy and Payment Schedule for Assets documents available at nationalgrid.com/electricity-transmission/document/153131/download

Next steps

Following the end of this consultation, we will undertake a detailed review of all feedback received. Your feedback, together with the outcomes of ongoing assessments and design work, will help to finalise the application for development consent.

The application process

What happens when the application is submitted?

- After receiving our application, PINS has 28 days to decide if it can proceed to the examination stage.
- If the application is accepted, anyone wishing to be involved in the examination process will be able to register their interest with PINS.
- Those who register their interest will be invited to submit their views on our proposals in writing and may be asked to speak at any public hearings that are held.
- PINS will hold an examination. When this finishes it has three months to make a recommendation to the Secretary of State (SoS) about whether the application should be approved. The SoS then has a further three months to make a final decision.
- Subject to our application being approved, construction of the project would start no earlier than 2028.

Alongside a host of documents outlining our finalised proposals for LionLink, our application for development consent will include:

Consultation report: we will submit a Consultation report summarising all the issues raised in consultation feedback, along with an explanation of how we have taken views into account to develop our final proposals.

Environmental statement: this will demonstrate how we have fulfilled the EIA process and report the likely environmental effects of the Proposed Scheme, as well as how we propose to minimise them.

Glossary

Converter Station

A converter station changes electricity between HVAC, which power our homes, and HVDC which is more efficient for transporting electricity over long distances and vice versa.

The proposed Converter Station is located to the east of Saxmundham.

Department for Energy Security and Net Zero

The Department for Energy Security and Net Zero (DESNZ) is the ministerial department with responsibility for energy matters. It will ultimately be responsible for determining whether to grant the DCO further to receiving the recommendation report from the Planning Inspectorate.

Development Consent Order

A Development Consent Order (DCO) is an order made under the Planning Act 2008, as amended, granting development consent for a development. It grants consent to develop the approved project and includes (among other things) powers to compulsorily acquire land and rights where required and deemed marine licences for any offshore works.

Kiln Lane Substation

The proposed connection point for LionLink to the British National Electricity Transmission System, located to the north of Friston. Formerly known as Friston Substation.

Landfall

The proposed Landfall is where the proposed offshore HVDC submarine cables are brought ashore and meets with the onshore proposed Underground HVDC Cables. This includes the Transition Joint Bay (TJB).

The proposed Landfall will be located at Walberswick, and there will be no permanent above ground infrastructure at the proposed Landfall.

National Energy System Operator (NESO)

The National Energy System Operator is the newly created energy system operator and planner for the United Kingdom. NESO was formed to support the UK's clean power targets, placing electricity and gas network planning and system operation under one independent organisation. Energy generators must apply to NESO when they wish to connect to the network, and NESO facilitates where and when new generation can connect to the electricity grid.

National Grid Electricity Transmission (NGET)

National Grid Electricity Transmission (NGET) is the operator of the national electricity transmission network across Great Britain. It owns and maintains the network in England and Wales, providing electricity supplies from generating stations to local distribution companies. NGET does not distribute electricity to individual premises, but its role in the wholesale market is vital to ensuring a reliable, secure and quality supply for all.

National Grid Ventures (NGV)

National Grid Ventures (NGV) operates and invests in energy projects, technologies and partnerships to accelerate the development of a clean energy future. This includes interconnectors (such as the LionLink Project), allowing trade between energy markets and the efficient use of renewable energy resources.

Ofgem

Ofgem (the Office of Gas and Electricity Markets) is the government regulator for gas and electricity markets in Great Britain. Ofgem is a non-ministerial government department and an independent national regulatory authority, whose role is to protect consumers as a greener, fairer energy system is delivered. Ofgem works with government, industry and consumer groups to help deliver net zero from an energy perspective at the lowest possible cost to consumers.

Offshore Hybrid Asset (OHA)

OHAs are a new generation of subsea technology that will connect clusters of offshore wind farms to multiple countries.

OHAs will help to speed up the connection of offshore wind and maximise the use of wind generation. They will also reduce the impact on local communities by reducing the amount of connection points and onshore infrastructure required to connect cleaner energy to the shore. OHAs are seen as the next generation of interconnector. Given the huge increase in offshore wind capacity needed to provide security of supply and help achieve net zero, in the future OHAs could create an offshore hub for green energy.

Planning Act 2008

The Planning Act 2008 is the relevant primary legislation for national infrastructure planning.

Planning Inspectorate (PINS)

The Planning Inspectorate reviews DCO applications and makes a recommendation to the Secretary of State, who will then decide whether to approve the DCO.

Preliminary Environmental Information Report (PEIR)

The PEIR is a document, compiled by the Applicant, that presents preliminary environmental information, as part of the statutory consultation process. This is defined by the Infrastructure Planning (Environmental Impact Assessment) Regulations 2017 as containing information which "is reasonably required for the consultation bodies to develop an informed view of the likely significant environmental effects of the development (and of any associated development)" (Regulation 122.(b)).

This PEIR describes the Proposed Scheme, sets out preliminary findings of the EIA undertaken to date, and the mitigation measures proposed to reduce effects. The PEIR is published at statutory consultation stage for information and feedback.

Our PEIR considers the potential effects of our proposals on the environment, along with the measures we are proposing to mitigate these impacts. It is organised by topic, such as air quality, noise, biodiversity, and landscaping. It also outlines the potential impacts on each area of the proposals, how these have been assessed, and sets out the measures we propose to avoid, reduce, or mitigate them based on our preliminary environmental assessment. The report, along with a nontechnical summary of its findings, is available on our project website.

Statutory consultation

Consultation undertaken with the community and stakeholders in advance of the application for development consent being submitted to the Planning Inspectorate, on behalf of the Secretary of state, in accordance with the PA 2008.

TenneT

Operator of the electricity transmission network across the Netherlands.

Underground high voltage alternating current (HVAC) cables

Transmission cables which connect between the Converter Station and Substation. HVAC cables are designed to manage alternating flow of current.

Underground high voltage direct current (HVDC) cables

Transmission cables which connect the Converter Station to the Landfall Site and then offshore. HVDC cables are designed to manage direct current.

National Grid Lion Link Limited

Company number 14722364

1-3 Strand

London

WG2N 5EH

United Kingdom

nationalgrid.com/lionlink

Scan here to
visit our website

