Future Energy Scenarios 2018

Marcus Stewart Energy Analysis Senior Manager National Grid System Operator

The energy landscape has been changing

Decarbonisation

400%

Increase in all renewable capacity since 2010

Decentralisation

3 times

More distributed capacity connected than in 2010

Digitalisation

12.3 mil

Smart and advanced meters in homes & businesses in GB

We are unsure of what the future holds

Uncertain Demand 3 to 11 million

Electric Vehicles driving on our roads by 2030

Uncertain Supply **37 to 50 GW**

Of wind capacity generating on the system by 2030

Uncertain Markets 10s to 1000s

Of active energy suppliers across the country by 2030

FES 2018 *We use Scenarios to scope out potential worlds*

Speed of decarbonisation

The energy transformation from now to 2050

Electric vehicles increase in all our scenarios

nationalgridSO

7

Smart charging - 2040 winter's day

Total electricity peak demand

When will we see the impact on peak of EV demand?

Consumer Evolution

Steady progression

Two Degrees

Community Renewables

Options for decarbonising home heating...

Residential heat in the 2050 compliant scenarios...

2050 figures	Community Renewables	Two Degrees			
Hydrogen boilers	None	10 million			
Heat pumps	15 million	6 million			
Biogas	134 TWh	78 TWh			
Homes on district heat	1.8 million	3.2 million			
Hybrid HPs	3.5 million	2 million			
Gas boilers	6.5 million	6.6 million			
Thermal efficiency	95% of all buildings EPC class C or better	95% of all buildings EPC class C or better			
Mt CO ₂ e	65 Mt from all heat	58 Mt from all heat			

Impact on annual energy demand

Potential Hydrogen pathway...

Mass roll out of hydrogen dependent on CCUS

Power Generation

What does this mean for generation?

What does this mean for networks?

Summer 2030 in Community Renewables

18

Gas supply: Themes 2017 vs 2050

UKCS depletion 38 bcm		Decarbonised gas <1%		;	Decentralised supply <1 %		
0 bcm	0 bcm	6%	39%		15%	14%	
1 bcm	0 bcm	0 %	11%		7%	3%	

FES 2018 key messages

A new energy world

1

Action on heat

9 Electric vehicle growth

Appendix

Engagement and use of the scenarios

How do we use FES?

System Operability Framework

Who do we engage with for FES?

For FES2018 650 stakeholders from 430 organisations were involved

Energy suppliers, connection customers, shippers, terminal operators, generators, distribution network operators, directly connected demand, interconnectors and project developers.

13

Suppliers and partners such as Alstom.

Great Britain's Government, devolved administrations, European departments and Parliament Members (Great Britain and EU).

General public. consumer aroups. Regulators

Great Britain's regulatory bodies (Ofgem, economic, environmental and safety) and EU regulatory bodies.

22 Educational interests Academics, students, schools and universities.

Non-government organisations Environmental groups and interest groups.

Energy industry

187

24

Supply chain

GE and Siemens.

Transmission owners, balancing service providers, offshore gas companies, operating margin providers, European networks, industry bodies, EU TSO, associations and innovators (technology, environmental and manufacturing).